5,438 research outputs found
Spin pumping by a field-driven domain wall
We calculate the charge current in a metallic ferromagnet to first order in
the time derivative of the magnetization direction. Irrespective of the
microscopic details, the result can be expressed in terms of the conductivities
of the majority and minority electrons and the non-adiabatic spin transfer
torque parameter . The general expression is evaluated for the specific
case of a field-driven domain wall and for that case depends strongly on the
ratio of and the Gilbert damping constant. These results may provide an
experimental method to determine this ratio, which plays a crucial role for
current-driven domain-wall motion.Comment: 4 pages, 1 figure v2: some typos corrected v3: published versio
Antiferromagnetic Spinor Condensates are Quantum Rotors
We establish a theoretical correspondence between spin-one antiferromagnetic
spinor condensates in an external magnetic field and quantum rotor models in an
external potential. We show that the rotor model provides a conceptually clear
picture of the possible phases and dynamical regimes of the antiferromagnetic
condensate. We also show that this mapping simplifies calculations of the
condensate's spectrum and wavefunctions. We use the rotor mapping to describe
the different dynamical regimes recently observed in Na condensates. We
also suggest a way to experimentally observe quantum mechanical effects
(collapse and revival) in spinor condensates.Comment: minor revisions. some typos correcte
Quantum phase transitions in the Fermi-Bose Hubbard model
We propose a multi-band Fermi-Bose Hubbard model with on-site fermion-boson
conversion and general filling factor in three dimensions. Such a Hamiltonian
models an atomic Fermi gas trapped in a lattice potential and subject to a
Feshbach resonance. We solve this model in the two state approximation for
paired fermions at zero temperature. The problem then maps onto a coupled
Heisenberg spin model. In the limit of large positive and negative detuning,
the quantum phase transitions in the Bose Hubbard and Paired-Fermi Hubbard
models are correctly reproduced. Near resonance, the Mott states are given by a
superposition of the paired-fermion and boson fields and the Mott-superfluid
borders go through an avoided crossing in the phase diagram.Comment: 4 pages, 3 figure
Schwinger-Boson Mean-Field Theory of Mixed-Spin Antiferromagnet
The Schwinger-boson mean-field theory is used to study the three-dimensional
antiferromagnetic ordering and excitations in compounds , a large
family of quasi-one-dimensional mixed-spin antiferromagnet. To investigate
magnetic properties of these compounds, we introduce a three-dimensional
mixed-spin antiferromagnetic Heisenberg model based on experimental results for
the crystal structure of . This model can explain the experimental
discovery of coexistence of Haldane gap and antiferromagnetic long-range order
below N\'{e}el temperature. Properties such as the low-lying excitations,
magnetizations of and rare-earth ions, N\'{e}el temperatures of different
compounds, and the behavior of Haldane gap below the N\'{e}el temperature are
investigated within this model, and the results are in good agreement with
neutron scattering experiments.Comment: 12 pages, 6 figure
Observability of Quantum Criticality and a Continuous Supersolid in Atomic Gases
We analyze the Bose-Hubbard model with a three-body hardcore constraint by
mapping the system to a theory of two coupled bosonic degrees of freedom. We
find striking features that could be observable in experiments, including a
quantum Ising critical point on the transition from atomic to dimer
superfluidity at unit filling, and a continuous supersolid phase for strongly
bound dimers.Comment: 4 pages, 2 figures, published version (Editor's suggestion
A magnetic analog of the isotope effect in cuprates
We present extensive magnetic measurements of the
(Ca_xLa_{1-x})(Ba_{1.75-x}La_{0.25+x})Cu_{3}O_{y} (CLBLCO) system with its four
different families (x) having a Tc^max(x) variation of 28% and minimal
structural changes. For each family we measured the Neel temperature, the
anisotropies of the magnetic interactions, and the spin glass temperature. Our
results exhibit a universal relation Tc=c*J*n_s for all families, where c~1, J
is the in plane Heisenberg exchange, and n_s is the carrier density. This
relates cuprate superconductivity to magnetism in the same sense that phonon
mediated superconductivity is related to atomic mass.Comment: With an additional inset in Fig.
Control of gradient-driven instabilities using shear Alfv\'en beat waves
A new technique for manipulation and control of gradient-driven instabilities
through nonlinear interaction with Alfv\'en waves in a laboratory plasma is
presented. A narrow field-aligned density depletion is created in the Large
Plasma Device (LAPD), resulting in coherent unstable fluctuations on the
periphery of the depletion. Two independent kinetic Alfv\'en waves are launched
along the depletion at separate frequencies, creating a nonlinear beat-wave
response at or near the frequency of the original instability. When the
beat-wave has sufficient amplitude, the original unstable mode is suppressed,
leaving only the beat-wave response at a different frequency, generally at
lower amplitude.Comment: Submitted for Publication in Physical Review Letters. Revision 2
reflects changes suggested by referees for PRL submission. One figure
removed, several major changes to another figure, and a number of major and
minor changes to the tex
Spin 3/2 dimer model
We present a parent Hamiltonian for weakly dimerized valence bond solid
states for arbitrary half-integral S. While the model reduces for S=1/2 to the
Majumdar-Ghosh Hamiltonian we discuss this model and its properties for S=3/2.
Its degenerate ground state is the most popular toy model state for discussing
dimerization in spin 3/2 chains. In particular, it describes the impurity
induced dimer phase in Cr8Ni as proposed recently. We point out that the
explicit construction of the Hamiltonian and its main features apply to
arbitrary half-integral spin S.Comment: 5+ pages, 6 figures; to appear in Europhysics Letter
A Path Intergal Approach to Current
Discontinuous initial wave functions or wave functions with discontintuous
derivative and with bounded support arise in a natural way in various
situations in physics, in particular in measurement theory. The propagation of
such initial wave functions is not well described by the Schr\"odinger current
which vanishes on the boundary of the support of the wave function. This
propagation gives rise to a uni-directional current at the boundary of the
support. We use path integrals to define current and uni-directional current
and give a direct derivation of the expression for current from the path
integral formulation for both diffusion and quantum mechanics. Furthermore, we
give an explicit asymptotic expression for the short time propagation of
initial wave function with compact support for both the cases of discontinuous
derivative and discontinuous wave function. We show that in the former case the
probability propagated across the boundary of the support in time is
and the initial uni-directional current is . This recovers the Zeno effect for continuous detection of a particle
in a given domain. For the latter case the probability propagated across the
boundary of the support in time is and the
initial uni-directional current is . This is an anti-Zeno
effect. However, the probability propagated across a point located at a finite
distance from the boundary of the support is . This gives a decay
law.Comment: 17 pages, Late
Renormalization algorithm for the calculation of spectra of interacting quantum systems
We present an algorithm for the calculation of eigenstates with definite
linear momentum in quantum lattices. Our method is related to the Density
Matrix Renormalization Group, and makes use of the distribution of multipartite
entanglement to build variational wave--functions with translational symmetry.
Its virtues are shown in the study of bilinear--biquadratic S=1 chains.Comment: Corrected version. We have added an appendix with an extended
explanation of the implementation of our algorith
- …