357 research outputs found
Stability of homogeneous magnetic phases in a generalized t-J model
We study the stability of homogeneous magnetic phases in a generalized t-J
model including a same-sublattice hopping t' and nearest-neighbor repulsion V
by means of the slave fermion-Schwinger boson representation of spin operators.
At mean-field order we find, in agreement with other authors, that the
inclusion of further-neighbor hopping and Coulomb repulsion makes the
compressibility positive, thereby stabilizing at this level the spiral and Neel
orders against phase separation. However, the consideration of Gaussian
fluctuation of order parameters around these mean-field solutions produces
unstable modes in the dynamical matrix for all relevant parameter values,
leaving only reduced stability regions for the Neel phase. We have computed the
one-loop corrections to the energy in these regions, and have also briefly
considered the effects of the correlated hopping term that is obtained in the
reduction from the Hubbard to the t-J model.Comment: 5 pages, 5 figures, Revte
Recommended from our members
National Ignition Facility frequency converter development
A preliminary error budget for the third harmonic converter for the National Ignition Facility (NIF) laser driver has been developed using a root-sum-square-accumulation of error sources. Such a budget sets an upper bound on the allowable magnitude of the various effects that reduce conversion efficiency. Development efforts on crystal mounting technology and crystal quality studies are discussed
The breakdown of the Nagaoka phase in the 2D t-J model
In the limit of weak exchange, J, at low hole concentration, the ground state
of the 2D t-J model is believed to be ferromagnetic. We study the leading
instability of this Nagaoka state, which emerges with increasing J. Both exact
diagonalization of small clusters, and a semiclassical analytical calculation
of larger systems show that above a certain critical value of the exchange,
Nagaoka's state is unstable to phase separation. In a finite-size system a
bubble of antiferromagnetic Mott insulator appears in the ground state above
this threshold. The size of this bubble depends on the hole concentration and
scales as a power of the system size, N
Theory of the first-order isostructural valence phase transitions in mixed valence compounds YbIn_{x}Ag_{1-x}Cu_{4}
For describing the first-order isostructural valence phase transition in
mixed valence compounds we develop a new approach based on the lattice Anderson
model. We take into account the Coulomb interaction between localized f and
conduction band electrons and two mechanisms of electron-lattice coupling. One
is related to the volume dependence of the hybridization. The other is related
to local deformations produced by f- shell size fluctuations accompanying
valence fluctuations. The large f -state degeneracy allows us to use the 1/N
expansion method. Within the model we develop a mean-field theory for the
first-order valence phase transition in YbInCu_{4}. It is shown that the
Coulomb interaction enhances the exchange interaction between f and conduction
band electron spins and is the driving force of the phase transition. A
comparison between the theoretical calculations and experimental measurements
of the valence change, susceptibility, specific heat, entropy, elastic
constants and volume change in YbInCu_{4} and YbAgCu_{4} are presented, and a
good quantitative agreement is found. On the basis of the model we describe the
evolution from the first-order valence phase transition to the continuous
transition into the heavy-fermion ground state in the series of compounds
YbIn_{1-x}Ag_{x}Cu_{4}. The effect of pressure on physical properties of
YbInCu_{4} is studied and the H-T phase diagram is found.Comment: 17 pages RevTeX, 9 Postscript figures, to be submitted to Phys.Rev.
Origin of strange metallic phase in cuprate superconductors
The origin of strange metallic phase is shown to exist due to these two
conditions---(i) the electrons are strongly interacting such that there are no
band and Mott-Hubbard gaps, and (ii) the electronic energy levels are crossed
in such a way that there is an electronic energy gap between two energy levels
associated to two different wave functions. The theory is also exploited to
explain (i) the upward- and downward-shifts in the -linear resistivity
curves, and (ii) the spectral weight transfer observed in the soft X-ray
absorption spectroscopic measurements of the La-Sr-Cu-O Mott insulator.Comment: To be published in J. Supercond. Nov. Mag
Stripes, Pseudogaps, and Van Hove Nesting in the Three-band tJ Model
Slave boson calculations have been carried out in the three-band tJ model for
the high-T_c cuprates, with the inclusion of coupling to oxygen breathing mode
phonons. Phonon-induced Van Hove nesting leads to a phase separation between a
hole-doped domain and a (magnetic) domain near half filling, with long-range
Coulomb forces limiting the separation to a nanoscopic scale. Strong
correlation effects pin the Fermi level close to, but not precisely at the Van
Hove singularity (VHS), which can enhance the tendency to phase separation. The
resulting dispersions have been calculated, both in the uniform phases and in
the phase separated regime. In the latter case, distinctly different
dispersions are found for large, random domains and for regular (static)
striped arrays, and a hypothetical form is presented for dynamic striped
arrays. The doping dependence of the latter is found to provide an excellent
description of photoemission and thermodynamic experiments on pseudogap
formation in underdoped cuprates. In particular, the multiplicity of observed
gaps is explained as a combination of flux phase plus charge density wave (CDW)
gaps along with a superconducting gap. The largest gap is associated with VHS
nesting. The apparent smooth evolution of this gap with doping masks a
crossover from CDW-like effects near optimal doping to magnetic effects (flux
phase) near half filling. A crossover from large Fermi surface to hole pockets
with increased underdoping is found. In the weakly overdoped regime, the CDW
undergoes a quantum phase transition (), which could be obscured
by phase separation.Comment: 15 pages, Latex, 18 PS figures Corrects a sign error: major changes,
esp. in Sect. 3, Figs 1-4,6 replace
Dispersion of Ordered Stripe Phases in the Cuprates
A phase separation model is presented for the stripe phase of the cuprates,
which allows the doping dependence of the photoemission spectra to be
calculated. The idealized limit of a well-ordered array of magnetic and charged
stripes is analyzed, including effects of long-range Coulomb repulsion.
Remarkably, down to the limit of two-cell wide stripes, the dispersion can be
interpreted as essentially a superposition of the two end-phase dispersions,
with superposed minigaps associated with the lattice periodicity. The largest
minigap falls near the Fermi level; it can be enhanced by proximity to a (bulk)
Van Hove singularity. The calculated spectra are dominated by two features --
this charge stripe minigap plus the magnetic stripe Hubbard gap. There is a
strong correlation between these two features and the experimental
photoemission results of a two-peak dispersion in LaSrCuO, and
the peak-dip-hump spectra in BiSrCaCuO. The
differences are suggestive of the role of increasing stripe fluctuations. The
1/8 anomaly is associated with a quantum critical point, here expressed as a
percolation-like crossover. A model is proposed for the limiting minority
magnetic phase as an isolated two-leg ladder.Comment: 24 pages, 26 PS figure
Quantum Arrival Time Formula from Decoherent Histories
In the arrival time problem in quantum mechanics, a standard formula that
frequently emerges as the probability for crossing the origin during a given
time interval is the current integrated over that time interval. This is
semiclassically correct but can be negative due to backflow. Here, we show that
this formula naturally arises in a decoherent histories analysis of the arrival
time problem. For a variety of initial states, we show that histories crossing
during different time intervals are approximately decoherent. Probabilities may
therefore be assigned and coincide with the standard formula (in a
semiclassical approximation), which is therefore positive for these states.
However, for initial states for which there is backflow, we show that there
cannot be decoherence of histories, so probabilities may not be assigned.Comment: 11 page
Theoretical study of lepton events in the atmospheric neutrino experiments at SuperK
Super-Kamiokande has reported the results for the lepton events in the
atmospheric neutrino experiment. These results have been presented for a 22.5kT
water fiducial mass on an exposure of 1489 days, and the events are divided
into sub-GeV, multi-GeV and PC events. We present a study of nuclear medium
effects in the sub-GeV energy region of atmospheric neutrino events for the
quasielastic scattering, incoherent and coherent pion production processes, as
they give the most dominant contribution to the lepton events in this energy
region. We have used the atmospheric neutrino flux given by Honda et al. These
calculations have been done in the local density approximation. We take into
account the effect of Pauli blocking, Fermi motion, Coulomb effect,
renormalization of weak transition strengths in the nuclear medium in the case
of the quasielastic reactions. The inelastic reactions leading to production of
leptons along with pions is calculated in a - dominance model by
taking into account the renormalization of properties in the nuclear
medium and the final state interaction effects of the outgoing pions with the
residual nucleus. We present the results for the lepton events obtained in our
model with and without nuclear medium effects, and compare them with the Monte
Carlo predictions used in the simulation and the experimentally observed events
reported by the Super-Kamiokande collaboration.Comment: 23 pages, 13 figure
Skymrion lattice melting in the quantum Hall system
The melting and magnetic disordering of the skyrmion lattice in the quantum
Hall system at filling factor are studied. A
Berezinskii-Kosterlitz-Thouless renormalization group theory is employed to
describe the coupled magnetic and translational degrees of freedom. The
non-trivial magnetic properties of the skyrmion system stem from the in-plane
components of the non-collinear magnetization in the vicinity of skyrmions,
which are described by an antiferromagnetic XY model. In a Coulomb gas
formulation the `particles' are the topological defects of the XY model
(vortices) and of the lattice (dislocations and disclinations). The latter
frustrate the antiferromagnetic order and acquire fractional vorticity in order
to minimize their energy. We find a number of melting/disordering scenarios for
various lattice types. While these results do not depend on a particular model,
we also consider a simple classical model for the skyrmion system. It results
in a rich T=0 phase diagram. We propose that the triangular and square skyrmion
lattices are generically separated by a centered rectangular phase in the
quantum Hall system.Comment: 15 pages with 5 figures. Minor revisions. Important reference to M.
Rao, S. Sengupta, and R. Shankar, Phys. Rev. Lett. 79, 3998 (1997) adde
- …