5,511 research outputs found

    Consumption and Cash-Flow Taxes in an International Setting

    Get PDF
    We model the effects of consumption-type taxes which differ according to the base and location of the tax. Our model incorporates a monopolist producing and selling in two countries with three sources of rent, each in a different location: a fixed factor (located with production), mobile managerial skill, and a monopoly mark-up (located with consumption). In the general case, we show that for national governments, there are tradeoffs in choosing between alternative taxes. In particular, a cash-flow tax on a source basis creates welfare-impairing distortions to production and consumption, but is incident on the owners of domestic production who may be non-resident. By contrast, a destination-based cash-flow tax does not distort behavior, but is incident only on domestic residents. In the alternative case of perfect competition, with the returns to the fixed factor accruing to domestic residents, the only distortion from the source-based tax is through the allocation of the mobile managerial skill. In this case, the sourcebased tax is also incident only on domestic residents, and is dominated by an equivalent tax on a destination basis, or by a sales tax.

    Domain Patterns in the Microwave-Induced Zero-Resistance State

    Full text link
    It has been proposed that the microwave-induced ``zero-resistance'' phenomenon, observed in a GaAs two-dimensional electron system at low temperatures in moderate magnetic fields, results from a state with multiple domains, in which a large local electric field \bE(\br) is oriented in different directions. We explore here the questions of what may determine the domain arrangement in a given sample, what do the domains look like in representative cases, and what may be the consequences of domain-wall localization on the macroscopic dc conductance. We consider both effects of sample boundaries and effects of disorder, in a simple model, which has a constant Hall conductivity, and is characterized by a Lyapunov functional.Comment: 19 pages, 5 figures; submitted to a special issue of Journal of Statistical Physics, in honor of P. C. Hohenberg and J. S. Lange

    Effective single-band models for strongly interacting fermions in an optical lattice

    Full text link
    To test effective Hamiltonians for strongly interacting fermions in an optical lattice, we numerically find the energy spectrum for two fermions interacting across a Feshbach resonance in a double well potential. From the spectrum, we determine the range of detunings for which the system can be described by an effective lattice model, and how the model parameters are related to the experimental parameters. We find that for a range of strong interactions the system is well described by an effective t−Jt-J model, and the effective superexchange term, JJ, can be smoothly tuned through zero on either side of unitarity. Right at and around unitarity, an effective one-band general Hubbard model is appropriate, with a finite and small on-site energy, due to a lattice-induced anharmonic coupling between atoms at the scattering threshold and a weakly bound Feshbach molecule in an excited center of mass state.Comment: 7 pages, 7 figures; minor typos correcte

    Mid-IR continuous-wave fiber-laser-pumped optical parametric oscillators

    Get PDF
    We review recent developments in continuous-wave mid-infrared optical parametric oscillators pumped by fiber lasers. Such devices are potentially valuable spectroscopic sources providing high output powers and rapid, wide-range tuning in the mid-infrared molecular fingerprint region

    Observability of Quantum Criticality and a Continuous Supersolid in Atomic Gases

    Full text link
    We analyze the Bose-Hubbard model with a three-body hardcore constraint by mapping the system to a theory of two coupled bosonic degrees of freedom. We find striking features that could be observable in experiments, including a quantum Ising critical point on the transition from atomic to dimer superfluidity at unit filling, and a continuous supersolid phase for strongly bound dimers.Comment: 4 pages, 2 figures, published version (Editor's suggestion

    Dissipation-induced d-Wave Pairing of Fermionic Atoms in an Optical Lattice

    Full text link
    We show how dissipative dynamics can give rise to pairing for two-component fermions on a lattice. In particular, we construct a "parent" Liouvillian operator so that a BCS-type state of a given symmetry, e.g. a d-wave state, is reached for arbitrary initial states in the absence of conservative forces. The system-bath couplings describe single-particle, number conserving and quasi-local processes. The pairing mechanism crucially relies on Fermi statistics. We show how such Liouvillians can be realized via reservoir engineering with cold atoms representing a driven dissipative dynamics.Comment: 5 pages, 3 figures. Replaced with the published versio

    Spin 3/2 dimer model

    Full text link
    We present a parent Hamiltonian for weakly dimerized valence bond solid states for arbitrary half-integral S. While the model reduces for S=1/2 to the Majumdar-Ghosh Hamiltonian we discuss this model and its properties for S=3/2. Its degenerate ground state is the most popular toy model state for discussing dimerization in spin 3/2 chains. In particular, it describes the impurity induced dimer phase in Cr8Ni as proposed recently. We point out that the explicit construction of the Hamiltonian and its main features apply to arbitrary half-integral spin S.Comment: 5+ pages, 6 figures; to appear in Europhysics Letter

    Ferromagnetically coupled dimers on the distorted Shastry-Sutherland lattice: Application to (CuCl)LaNb2O7

    Full text link
    A recent study [Tassel {\it et al.}, Phys. Rev. Lett. {\bf 105}, 167205 (2010)] has proposed a remarkable spin model for (CuCl)LaNb2O7, in which dimers are ferromagnetically coupled to each other on the distorted Shastry-Sutherland lattice. In this model, the intra-dimer exchange coupling J>0 is antiferromagnetic, while the inter-dimer exchange couplings are ferromagnetic and take different values, J_x,J_y<0, in the two bond directions. Anticipating that the highly frustrated character of this model may lead to a wide range of behaviors in (CuCl)LaNb2O7 and related compounds, we theoretically investigate the ground state phase diagram of this model in detail using the following three approaches: a strong-coupling expansion for small J_x and J_y, exact diagonalization for finite clusters, and a Schwinger boson mean field theory. When |J_x|, |J_y| <~ J, the system stays in a dimer singlet phase with a finite spin gap. This state is adiabatically connected to the decoupled-dimer limit J_x=J_y=0. We show that the magnetization process of this phase depends crucially on the spatial anisotropy of the inter-dimer couplings. The magnetization shows a jump or a smooth increase for weak and strong anisotropy, respectively, after the spin gap closes at a certain magnetic field. When |J_x| or |J_y| >~ J, quantum phase transitions to various magnetically ordered phases (ferromagnetic, collinear stripe, and spiral) occur. The Schwinger boson analysis demonstrates that quantum fluctuations split the classical degeneracy of different spiral ground states. Implications for (CuCl)LaNb2O7 and related compounds are discussed in light of our theoretical results and existing experimental data.Comment: 21 pages, 20 figure

    Quantum Field Theory for the Three-Body Constrained Lattice Bose Gas -- Part I: Formal Developments

    Full text link
    We develop a quantum field theoretical framework to analytically study the three-body constrained Bose-Hubbard model beyond mean field and non-interacting spin wave approximations. It is based on an exact mapping of the constrained model to a theory with two coupled bosonic degrees of freedom with polynomial interactions, which have a natural interpretation as single particles and two-particle states. The procedure can be seen as a proper quantization of the Gutzwiller mean field theory. The theory is conveniently evaluated in the framework of the quantum effective action, for which the usual symmetry principles are now supplemented with a ``constraint principle'' operative on short distances. We test the theory via investigation of scattering properties of few particles in the limit of vanishing density, and we address the complementary problem in the limit of maximum filling, where the low lying excitations are holes and di-holes on top of the constraint induced insulator. This is the first of a sequence of two papers. The application of the formalism to the many-body problem, which can be realized with atoms in optical lattices with strong three-body loss, is performed in a related work [14].Comment: 21 pages, 5 figure

    Effect of spatial inhomogeneity on the mapping between strongly interacting fermions and weakly interacting spins

    Full text link
    A combined analytical and numerical study is performed of the mapping between strongly interacting fermions and weakly interacting spins, in the framework of the Hubbard, t-J and Heisenberg models. While for spatially homogeneous models in the thermodynamic limit the mapping is thoroughly understood, we here focus on aspects that become relevant in spatially inhomogeneous situations, such as the effect of boundaries, impurities, superlattices and interfaces. We consider parameter regimes that are relevant for traditional applications of these models, such as electrons in cuprates and manganites, and for more recent applications to atoms in optical lattices. The rate of the mapping as a function of the interaction strength is determined from the Bethe-Ansatz for infinite systems and from numerical diagonalization for finite systems. We show analytically that if translational symmetry is broken through the presence of impurities, the mapping persists and is, in a certain sense, as local as possible, provided the spin-spin interaction between two sites of the Heisenberg model is calculated from the harmonic mean of the onsite Coulomb interaction on adjacent sites of the Hubbard model. Numerical calculations corroborate these findings also in interfaces and superlattices, where analytical calculations are more complicated.Comment: 7 pages, 6 figure
    • 

    corecore