5,112 research outputs found

    Optimal Tc_c of cuprates: role of screening and reservoir layers

    Full text link
    We explore the role of charge reservoir layers (CRLs) on the superconducting transition temperature of cuprate superconductors. Specifically, we study the effect of CRLs with efficient short distance dielectric screening coupled capacitively to copper oxide metallic layers. We argue that dielectric screening at short distances and at frequencies of the order of the superconducting gap, but small compared to the Fermi energy can significantly enhance Tc_c, the transition temperature of an unconventional superconductor. We discuss the relevance of our qualitative arguments to a broader class of unconventional superconductors.Comment: 8 Pages, 4 figure

    The fully self-consistent quasiparticle random phase approximation and its application to the isobaric analog resonances

    Full text link
    A microscopic model aimed at the description of charge-exchange nuclear excitations along isotopic chains which include open-shell systems, is developed. It consists of quasiparticle random phase approximation (QRPA) made on top of Hartree-Fock-Bardeen-Cooper-Schrieffer (HF-BCS). The calculations are performed by using the Skyrme interaction in the particle-hole channel and a zero-range, density-dependent pairing force in the particle-particle channel. At variance with the (many) versions of QRPA which are available in literature, in our work special emphasis is put on the full self-consistency. Its importance, as well as the role played by the charge-breaking terms of the nuclear Hamiltonian, like the Coulomb interaction, the charge symmetry and charge independence breaking (CSB-CIB) forces and the electromagnetic spin-orbit, are elucidated by means of numerical calculations of the isobaric analog resonances (IAR). The theoretical energies of these states along the chain of the Sn isotopes agree well with the experimental data in the stable isotopes. Predictions for unstable systems are presented.Comment: 15 pages, 6 figure

    Observability of Quantum Criticality and a Continuous Supersolid in Atomic Gases

    Full text link
    We analyze the Bose-Hubbard model with a three-body hardcore constraint by mapping the system to a theory of two coupled bosonic degrees of freedom. We find striking features that could be observable in experiments, including a quantum Ising critical point on the transition from atomic to dimer superfluidity at unit filling, and a continuous supersolid phase for strongly bound dimers.Comment: 4 pages, 2 figures, published version (Editor's suggestion

    A magnetic analog of the isotope effect in cuprates

    Full text link
    We present extensive magnetic measurements of the (Ca_xLa_{1-x})(Ba_{1.75-x}La_{0.25+x})Cu_{3}O_{y} (CLBLCO) system with its four different families (x) having a Tc^max(x) variation of 28% and minimal structural changes. For each family we measured the Neel temperature, the anisotropies of the magnetic interactions, and the spin glass temperature. Our results exhibit a universal relation Tc=c*J*n_s for all families, where c~1, J is the in plane Heisenberg exchange, and n_s is the carrier density. This relates cuprate superconductivity to magnetism in the same sense that phonon mediated superconductivity is related to atomic mass.Comment: With an additional inset in Fig.

    Control of gradient-driven instabilities using shear Alfv\'en beat waves

    Full text link
    A new technique for manipulation and control of gradient-driven instabilities through nonlinear interaction with Alfv\'en waves in a laboratory plasma is presented. A narrow field-aligned density depletion is created in the Large Plasma Device (LAPD), resulting in coherent unstable fluctuations on the periphery of the depletion. Two independent kinetic Alfv\'en waves are launched along the depletion at separate frequencies, creating a nonlinear beat-wave response at or near the frequency of the original instability. When the beat-wave has sufficient amplitude, the original unstable mode is suppressed, leaving only the beat-wave response at a different frequency, generally at lower amplitude.Comment: Submitted for Publication in Physical Review Letters. Revision 2 reflects changes suggested by referees for PRL submission. One figure removed, several major changes to another figure, and a number of major and minor changes to the tex

    Spin 3/2 dimer model

    Full text link
    We present a parent Hamiltonian for weakly dimerized valence bond solid states for arbitrary half-integral S. While the model reduces for S=1/2 to the Majumdar-Ghosh Hamiltonian we discuss this model and its properties for S=3/2. Its degenerate ground state is the most popular toy model state for discussing dimerization in spin 3/2 chains. In particular, it describes the impurity induced dimer phase in Cr8Ni as proposed recently. We point out that the explicit construction of the Hamiltonian and its main features apply to arbitrary half-integral spin S.Comment: 5+ pages, 6 figures; to appear in Europhysics Letter

    Floquet Spectrum and Transport Through an Irradiated Graphene Ribbon

    Full text link
    Graphene subject to a spatially uniform, circularly-polarized electric field supports a Floquet spectrum with properties akin to those of a topological insulator, including non-vanishing Chern numbers associated with bulk bands and current-carrying edge states. Transport properties of this system however are complicated by the non-equilibrium occupations of the Floquet states. We address this by considering transport in a two-terminal ribbon geometry for which the leads have well-defined chemical potentials, with an irradiated central scattering region. We demonstrate the presence of edge states, which for infinite mass boundary conditions may be associated with only one of the two valleys. At low frequencies, the bulk DC conductivity near zero energy is shown to be dominated by a series of states with very narrow anticrossings, leading to super-diffusive behavior. For very long ribbons, a ballistic regime emerges in which edge state transport dominates.Comment: 4.2 pages, 3 figure

    Semiclassical Approach to Competing Orders in Two-leg Spin Ladder with Ring-Exchange

    Full text link
    We investigate the competition between different orders in the two-leg spin ladder with a ring-exchange interaction by means of a bosonic approach. The latter is defined in terms of spin-1 hardcore bosons which treat the N\'eel and vector chirality order parameters on an equal footing. A semiclassical approach of the resulting model describes the phases of the two-leg spin ladder with a ring-exchange. In particular, we derive the low-energy effective actions which govern the physical properties of the rung-singlet and dominant vector chirality phases. As a by-product of our approach, we reveal the mutual induction phenomenon between spin and chirality with, for instance, the emergence of a vector-chirality phase from the application of a magnetic field in bilayer systems coupled by four-spin exchange interactions.Comment: 15 pages, 9 figure

    Quantum Field Theory for the Three-Body Constrained Lattice Bose Gas -- Part I: Formal Developments

    Full text link
    We develop a quantum field theoretical framework to analytically study the three-body constrained Bose-Hubbard model beyond mean field and non-interacting spin wave approximations. It is based on an exact mapping of the constrained model to a theory with two coupled bosonic degrees of freedom with polynomial interactions, which have a natural interpretation as single particles and two-particle states. The procedure can be seen as a proper quantization of the Gutzwiller mean field theory. The theory is conveniently evaluated in the framework of the quantum effective action, for which the usual symmetry principles are now supplemented with a ``constraint principle'' operative on short distances. We test the theory via investigation of scattering properties of few particles in the limit of vanishing density, and we address the complementary problem in the limit of maximum filling, where the low lying excitations are holes and di-holes on top of the constraint induced insulator. This is the first of a sequence of two papers. The application of the formalism to the many-body problem, which can be realized with atoms in optical lattices with strong three-body loss, is performed in a related work [14].Comment: 21 pages, 5 figure
    • …
    corecore