6,842 research outputs found

    Capital Gains Realizations of the Rich and Sophisticated

    Get PDF
    This paper attempts to bring theoretical and empirical research on capital gains realization behavior closer together by considering whether investors who appear to engage more in strategic tax avoidance activity also respond differently to tax rates. We find that such investors exhibit significantly smaller responses to permanent tax rate changes than other investors. Put another way, a larger part of their response to capital gains tax rates reflects timing, consistent with their closer adherence to tax avoidance strategies emphasizing arbitrage based on tax rate differentials. This finding holds for two alternative specifications of realization behavior, one of which suggests larger permanent responses to capital gains tax rates than those of previous panel studies.

    Tax Loss Carryforwards and Corporate Tax Incentives

    Get PDF
    This paper investigates the extent to which loss-offset constraints affect corporate tax incentives. Using data gathered from corporate annual reports, we estimate that in 1984 fifteen percent of the firms in the nonfinancial corporate sector had tax loss carryforwards. When weighted by their market value, however, these firms account for less than three percent of this sector, suggesting that loss carryforwards are concentrated among small firms and affect relatively few large corporations. For those firms with loss carryforwards, however, the incentive effects of the corporate income tax may differ significantly from those facing taxable firms. We demonstrate this by calculating the effective tax rates on equipment and structures for both types of firms. Our results suggest that firms which are currently taxable have a substantially greater incentive for equipment investment than firms with loss carryforwards, but that loss carryforwards have a relatively smaller effect on the tax incentive for investing in structures. Overall, firms with loss carryforwards receive a smaller investment stimulus than taxable firms.

    Domain Patterns in the Microwave-Induced Zero-Resistance State

    Full text link
    It has been proposed that the microwave-induced ``zero-resistance'' phenomenon, observed in a GaAs two-dimensional electron system at low temperatures in moderate magnetic fields, results from a state with multiple domains, in which a large local electric field \bE(\br) is oriented in different directions. We explore here the questions of what may determine the domain arrangement in a given sample, what do the domains look like in representative cases, and what may be the consequences of domain-wall localization on the macroscopic dc conductance. We consider both effects of sample boundaries and effects of disorder, in a simple model, which has a constant Hall conductivity, and is characterized by a Lyapunov functional.Comment: 19 pages, 5 figures; submitted to a special issue of Journal of Statistical Physics, in honor of P. C. Hohenberg and J. S. Lange

    Quantum phase transitions in the Fermi-Bose Hubbard model

    Full text link
    We propose a multi-band Fermi-Bose Hubbard model with on-site fermion-boson conversion and general filling factor in three dimensions. Such a Hamiltonian models an atomic Fermi gas trapped in a lattice potential and subject to a Feshbach resonance. We solve this model in the two state approximation for paired fermions at zero temperature. The problem then maps onto a coupled Heisenberg spin model. In the limit of large positive and negative detuning, the quantum phase transitions in the Bose Hubbard and Paired-Fermi Hubbard models are correctly reproduced. Near resonance, the Mott states are given by a superposition of the paired-fermion and boson fields and the Mott-superfluid borders go through an avoided crossing in the phase diagram.Comment: 4 pages, 3 figure

    Effective single-band models for strongly interacting fermions in an optical lattice

    Full text link
    To test effective Hamiltonians for strongly interacting fermions in an optical lattice, we numerically find the energy spectrum for two fermions interacting across a Feshbach resonance in a double well potential. From the spectrum, we determine the range of detunings for which the system can be described by an effective lattice model, and how the model parameters are related to the experimental parameters. We find that for a range of strong interactions the system is well described by an effective tJt-J model, and the effective superexchange term, JJ, can be smoothly tuned through zero on either side of unitarity. Right at and around unitarity, an effective one-band general Hubbard model is appropriate, with a finite and small on-site energy, due to a lattice-induced anharmonic coupling between atoms at the scattering threshold and a weakly bound Feshbach molecule in an excited center of mass state.Comment: 7 pages, 7 figures; minor typos correcte

    A Path Intergal Approach to Current

    Full text link
    Discontinuous initial wave functions or wave functions with discontintuous derivative and with bounded support arise in a natural way in various situations in physics, in particular in measurement theory. The propagation of such initial wave functions is not well described by the Schr\"odinger current which vanishes on the boundary of the support of the wave function. This propagation gives rise to a uni-directional current at the boundary of the support. We use path integrals to define current and uni-directional current and give a direct derivation of the expression for current from the path integral formulation for both diffusion and quantum mechanics. Furthermore, we give an explicit asymptotic expression for the short time propagation of initial wave function with compact support for both the cases of discontinuous derivative and discontinuous wave function. We show that in the former case the probability propagated across the boundary of the support in time Δt\Delta t is O(Δt3/2)O(\Delta t^{3/2}) and the initial uni-directional current is O(Δt1/2)O(\Delta t^{1/2}). This recovers the Zeno effect for continuous detection of a particle in a given domain. For the latter case the probability propagated across the boundary of the support in time Δt\Delta t is O(Δt1/2)O(\Delta t^{1/2}) and the initial uni-directional current is O(Δt1/2)O(\Delta t^{-1/2}). This is an anti-Zeno effect. However, the probability propagated across a point located at a finite distance from the boundary of the support is O(Δt)O(\Delta t). This gives a decay law.Comment: 17 pages, Late

    Controlling Spin Exchange Interactions of Ultracold Atoms in Optical Lattices

    Full text link
    We describe a general technique that allows to induce and control strong interaction between spin states of neighboring atoms in an optical lattice. We show that the properties of spin exchange interactions, such as magnitude, sign, and anisotropy can be designed by adjusting the optical potentials. We illustrate how this technique can be used to efficiently ``engineer'' quantum spin systems with desired properties, for specific examples ranging from scalable quantum computation to probing a model with non-trivial topological orders that supports exotic non-abelian anyonic excitations.Comment: 5 pages, 2 figures, revte

    Tunneling-driven breakdown of the 331 state and the emergent Pfaffian and composite Fermi liquid phases

    Full text link
    We examine the possibility of creating the Moore-Read Pfaffian in the lowest Landau level when the multicomponent Halperin 331 state (believed to describe quantum Hall bilayers and wide quantum wells at the filling factor ν=1/2\nu=1/2) is destroyed by the increase of tunneling. Using exact diagonalization of the bilayer Hamiltonian with short-range and long-range (Coulomb) interactions in spherical and periodic rectangular geometries, we establish that tunneling is a perturbation that drives the 331 state into a compressible composite Fermi liquid, with the possibility for an intermediate critical state that possesses some properties of the Moore-Read Pfaffian. These results are interpreted in the two-component BCS model for Cauchy pairing with a tunneling constraint. We comment on the conditions to be imposed on a system with fluctuating density in order to achieve the stable Pfaffian phase.Comment: 10 pages, 7 figure
    corecore