89 research outputs found

    Tissue-specific regulation of S6K1 by insulin in chickens divergently selected for growth

    No full text
    International audienceIn chickens, insulin injection leads to the activation of the early steps of insulin receptor signaling in liver but not in muscles. Paradoxically, muscle p70 S6 kinase (S6K1), a kinase controlling protein synthesis and growth, was markedly activated in response to insulin. The aim of this study was to further investigate S6K1 regulation and activation using chickens divergently selected for growth, i.e. fast- (FGL) and slow- (SGL) growing lines. In the Pectoralis major muscle, insulin stimulated S6K1 phosphorylation on T389 in FGL and SGL chickens, whereas S6K1 phosphorylation on T421/S424 was increased by insulin only in FGL chickens. Moreover, insulin-related increase in muscle S6K1 activity was greater in FGL chickens than in SGL chickens. Surprisingly, liver S6K1 was insulin insensitive in the two genotypes. Such difference of regulation between tissues and between genotypes was not observed for the protein kinase B, which is involved in insulin signaling upstream of S6K1, or for eukaryotic initiation factor 4E-binding protein. Interestingly, insulin-activated a S6K1 downstream target, the ribosomal protein S6, irrespective of tissue, suggesting that a pathway different of the S6K1 cascade may be involved in S6 phosphorylation in chicken liver. In conclusion, the regulation of S6K1 differs between the liver and muscle and between chickens divergently selected for growth. Our results suggest a potential involvement of S6K1 in the control of muscle growth and an open issue concerning S6K1 function in chicken liver. (C) 2007 Elsevier Inc. All rights reserved

    Refeeding and insulin activate the AKT/p70S6 kinase pathway without affecting IRS1 tyrosine phosphorylation in chicken muscle

    No full text
    International audiencep70 S6 kinase (p70S6K) is a key enzyme involved in the control of protein synthesis. We have previously shown that this kinase is insulin sensitive in chicken muscle despite a relative insulin resistance in the early steps of insulin receptor signaling in this tissue, particularly with no change in tyrosine phosphorylation of the insulin receptor substrate 1(IRS 1). The aim of the present study is to further study the p70S6K pathway in chicken muscle. By analyzing in silico several kinases involved in the protein kinase B (PKB also called AKT)/target of rapamycin (TOR)/p70S6K pathway in the chicken, we showed that the amino acid sequence of the proteins exhibited a very high identity with their homologs in mammalian species and Drosophila. We investigated the regulation of these kinases in vivo or in vitro. Refeeding and insulin treatment significantly (P < 0.05) increased the phosphorylation and/or activity of kinases upstream of p70S6K such as AKT and TOR. Similarly, refeeding and insulin increased the phosphorylation of p70S6K on key residues (i.e. T389, T229 and T421/S424) and the phosphorylation of a p70S6K downstream target, the ribosomal protein S6 (by 3-10-fold, P < 0.05). Interestingly, we also showed an increase in the phosphorylation level of IRS 1 on S632/S635, sites involved in insulin resistance. In conclusion, the AKT/TOR/p70S6K pathway is activated by refeeding and insulin injection, which might negatively regulate IRS 1 tyrosine phosphorylation. These results indicate some particularities of the insulin signaling in chicken muscle and suggest the involvement of p70S6K in these features. (c) 2006 Elsevier Inc. All rights reserved

    Induction of glucokinase in chicken liver by dietary carbohydrates

    No full text
    International audienceWe recently provided evidence of the presence of glucokinase (GCK) in the chicken liver [Berradi, H., Taouis, M., Cassy, S., Rideau, N., 2005. Glucokinase in chicken (Gallus gallus). Partial cDNA cloning, immunodetection and activity determination. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 141, 129-1391. In the present study we addressed the question of whether nutritional regulation of GCK occurs. Several nutritional conditions were compared in chickens (5 weeks old) previously trained to meal-feeding. One group was left in the fasted state (F: 24 h) and one was tested at the end of the 2 h meal (refed: RF). Two other 2 h meal-refed groups received an acute oral saccharose load (6 ml/kg BW) just before the 2 h meal and were sacrificed either at the end of the meal (Saccharose refed, SRF) or 3 h later (SRF+3). Liver GCK mRNA and protein levels did not differ between F, RF and SRF chickens but were significantly increased in SRF+3 chickens (2-fold, p < 0.05). GCK activity did not differ between F and RF chickens but increased significantly in SRF and SRF+3 chickens (1.7-fold, p < 0.05). Chicken liver GCK expression (mRNA and protein) and activity were therefore inducible in these chickens by feeding a meal with acute oral administration of carbohydrate. These and recent findings demonstrating insulin dependency of the liver GCK mRNA and protein strongly suggest that GCK may have an important role in carbohydrate metabolism, including that of the chicken. However, even in these highly stimulatory conditions, liver GCK activity remained relatively low in comparison with other species. The latter result may partly explain the high plasma glucose level in the chicken. (C) 2008 Elsevier Inc. All rights reserved

    Slow and Fast-Growing Chickens Use Different Antioxidant Pathways to Maintain Their Redox Balance during Postnatal Growth

    No full text
    The evolution of parameters known to be relevant indicators of energy status, oxidative stress, and antioxidant defense in chickens was followed. These parameters were measured weekly from 1 to 42 days in plasma and/or muscles and liver of two strains differing in growth rate. At 1-day old, in plasma, slow-growing (SG) chicks were characterized by a high total antioxidant status (TAS), probably related to higher superoxide dismutase (SOD) activity and uric acid levels compared to fast-growing (FG) chicks whereas the lipid peroxidation levels were higher in the liver and muscles of SG day-old chicks. Irrespective of the genotype, the plasma glutathione reductase (GR) and peroxidase (GPx) activities and levels of hydroperoxides and α- and γ-tocopherols decreased rapidly post-hatch. In the muscles, lipid peroxidation also decreased rapidly after hatching as well as catalase, GR, and GPx activities, while the SOD activity increased. In the liver, the TAS was relatively stable the first week after hatching while the value of thio-barbituric acid reactive substances (TBARS) and GR activity increased and GPx and catalase activities decreased. Our study revealed the strain specificities regarding the antioxidant systems used to maintain their redox balance over the life course. Nevertheless, the age had a much higher impact than strain on the antioxidant ability of the chickens
    • …
    corecore