42 research outputs found

    Predicted efficacy and tolerance of different dosage regimens of benzylpenicillin in horses based on a pharmacokinetic study with three IM formulations and one IV formulation

    Get PDF
    IntroductionBenzylpenicillin (BP) is a first-line antibiotic in horses but there are discrepancies between manufacturers and literature recommendations regarding dosing regimen. Objectives of this study were to evaluate pharmacokinetics and local tolerance of four different formulations of BP in adult horses, and to suggest optimized dosing regimen according to the formulation.MethodsA cross-over design was used in 3 phases for the intramuscular injection of three different products: procaine BP alone, procaine BP/ benzathine BP combination or penethamate hydriodide were administered IM in the gluteal muscles of 6 horses for 3 days. Single IV administration of sodium BP was performed to the same horses with a dose of 22,000 IU BP/kg bwt 39 weeks after last IM injection. BP plasma concentrations were determined by UPLC assay coupled with mass spectrometry and a PK/PD analysis was conducted to predict the efficacy of various dosing regimens by estimating values of the fT>MIC index for different minimum inhibitory concentrations (MIC). Tolerance at the site of IM injection was monitored by creatine kinase activity quantified with a validated chemistry system and clinical scorings.Results and discussionExcept one neurological reaction following one administration of penethamate hydriodide, the tolerance was good. Procaine BP alone, procaine BP/benzathine BP combination or penethamate hydriodide intramuscular administrations at a dosage of 22,000 IU BP/kg bwt q24h for 5 days would yield plasma concentrations that should be effective against bacteria with MIC of ≤0.256, 0.125 or 0.064 mg/L respectively. Of all the tested treatments, the use of a sodium BP by IV Constant Rate Infusion (CRI) for 10 hours a day was deemed to be the most efficient. All the formulations tested in this study are adequate to treat infections with susceptible Streptococcus equi

    Why Were More Than 200 Subjects Required to Demonstrate the Bioequivalence of a New Formulation of Levothyroxine with an Old One?

    Get PDF
    At the request of French Regulatory Authorities, a new formulation of Levothyrox® was licensed in France in 2017, with the objective of avoiding the stability deficiencies of an existing licensed formulation. Before launching the new formulation, an average bioequivalence (ABE) trial was conducted, having enrolled 204 subjects and selected for interpretation a narrow a priori bioequivalence range of 0.90–1.11. Bioequivalence was concluded. In a previous publication, we questioned the ability of an ABE trial to guarantee the switchability within patients of the new and old levothyroxine formulations. It was suggested that the two formulations should be compared using the conceptual framework of individual bioequivalence. The present paper is a response to those claiming that, despite the fact that ABE analysis does not formally address the switchability of the two formulations, future patients will nevertheless be fully protected. The basis for this claim is that the ABE study was established in a large trial and analyzed using a stringent a priori acceptance interval of equivalence. These claims are questionable, because the use of a very large number of subjects nullifies the implicit precautionary intention of the European guideline when, for a Narrow Therapeutic Index drug, it recommends shortening the a priori acceptance interval from 0.80–1.25 to 0.90–1.11

    Development of an in vitro biofilm model for the study of the impact of fluoroquinolones on sewer biofilm microbiota

    Get PDF
    Sewer biofilms are likely to constitute hotspots for selecting and accumulating antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). This study aimed to optimize culture conditions to obtain in vitro biofilms, mimicking the biofilm collected in sewers, to study the impact of fluoroquinolones (FQs) on sewer biofilm microbiota. Biofilms were grown on coupons in CDC Biofilm Reactors®, continuously fed with nutrients and inoculum (1/100 diluted wastewater). Different culture conditions were tested: (i) initial inoculum: diluted wastewater with or without sewer biofilm, (ii) coupon material: concrete vs. polycarbonate, and (iii) time of culture: 7 versus 14 days. This study found that the biomass was highest when in vitro biofilms were formed on concrete coupons. The biofilm taxonomic diversity was not affected by adding sewer biofilm to the initial inoculum nor by the coupon material. Pseudomonadales, Burkholderiales and Enterobacterales dominated in the sewer biofilm composition, whereas in vitro biofilms were mainly composed of Enterobacterales. The relative abundance of qnrA, B, D and S genes was higher in in vitro biofilms than sewer biofilm. The resistome of sewer biofilm showed the highest Shannon diversity index compared to wastewater and in vitro biofilms. A PCoA analysis showed differentiation of samples according to the nature of the sample, and a Procrustes analysis showed that the ARG changes observed were linked to changes in the microbial community. The following growing conditions were selected for in vitro biofilms: concrete coupons, initial inoculation with sewer biofilm, and a culture duration of 14 days. Then, biofilms were established under high and low concentrations of FQs to validate our in vitro biofilm model. Fluoroquinolone exposure had no significant impact on the abundance of qnr genes, but high concentration exposure increased the proportion of mutations in gyrA (codons S83L and D87N) and parC (codon S80I). In conclusion, this study allowed the determination of the culture conditions to develop an in vitro model of sewer biofilm; and was successfully used to investigate the impact of FQs on sewer microbiota. In the future, this setup could be used to clarify the role of sewer biofilms in disseminating resistance to FQs in the environment

    Levothyrox® new and old formulations: are they switchable for millions of patients?

    Get PDF
    International audienceIn France, more than 2.5 million patients are currently treated with levothyroxine, mainly as the marketed product Levothyrox ®. In March 2017, at the request of French authorities, a new formulation of Levothyrox ® was licensed, with the objective of avoiding stability deficiencies of the old formulation. Before launching this new formulation, an average bioequivalence trial, based on European Union recommended guidelines, was performed. The implicit rationale was the assumption that the two products, being bioequivalent, would also be switchable, allowing substitution of the new for the old formulation, thus avoiding the need for individual calibration of the dosage regimen of thyroxine, using the thyroid-stimulating hormone level as the endpoint, as required for a new patient on initiating treatment. Despite the fact that both formulations were shown to be bioequivalent, adverse drug reactions were reported in several thousands of patients after taking the new formulation. In this opinion paper, we report that more than 50% of healthy volunteers enrolled in a successful regulatory average bioequivalence trial were actually outside the a priori bioequivalence range. Therefore, we question the ability of an average bioequivalence trial to guarantee the switchability within patients of the new and old levothyroxine formulations. We further propose an analysis of this problem using the conceptual framework of individual bioequivalence. This involves investigating the bioavailability of the two formulations within a subject, by comparing not only the population means (as established by average bioequivalence) but also by assessing two variance terms, namely the within-subject variance and the variance estimating subject-by-formulation interaction. A higher within individual variability for the new formulation would lead to reconsideration of the appropriateness of the new formulation. Alternatively, a possible subject-by-formulation interaction would allow a judgement on the ability, or not, of doctors to manage patients effectively during transition from the old to the new formulation

    Comparison of the in vitro activity of five antimicrobial drugs on Staphylococcus pseudintermedius and Staphylococcus aureus biofilms

    Get PDF
    Resistance in canine pathogenic staphylococci is necessitating re-evaluation of the current antimicrobial treatments especially for biofilm-associated infections. Long, repeated treatments are often required to control such infections due to the tolerance of bacteria within the biofilm. To comply with the goal of better antibiotic stewardship in veterinary medicine, the efficacies of the available drugs need to be directly assessed on bacterial biofilms.We compared the activities of amoxicillin, cefalexin, clindamycin, doxycycline and marbofloxacin on in vitro biofilms of Staphylococcus pseudintermedius and Staphylococcus aureus. Exposure of biofilms for 15 hours to maximum concentrations of the antibiotics achievable in canine plasma only reduced biofilm bacteria by 0.5 to 2.0 log10 CFU, compared to the control, except for marbofloxacin which reduced S. aureus biofilms by 5.4 log10 CFU. Two-antibiotic combinations did not improve, and even decreased, bacterial killing. In comparison, 5 min-exposure to 2 % chlorhexidine reduced biofilms of the 2 tested strains by 4 log10 CFU. Our results showed that S. pseudintermedius biofilm, unlike S. aureus biofilm, was highly tolerant to all the drugs tested, consistent with the treatment failures observed in practice. Under our conditions, the use of topical chlorhexidine would probably be the best currently available strategy to reduce S. pseudintermedius biofilm

    SEMI-MECHANISTIC PK/PD MODELING OF THREE SULFONAMIDES-TRIMETHOPRIM COMBINATIONS WITH ESCHERICHIA COLI

    No full text
    International audienceDue to the restrictive use of critical antibiotics in Europe, it is strongly recommended for veterinarians to use first-line antibiotics classified as category D by the EMA, such as the synergistic combination of sulfonamides (S) and trimethoprim (TMP). The optimal in vivo concentration ratio for synergism defined as 1:19 was determined 40 years ago for human medicine and using the TMP/sulfamethoxazole (SMX) combination. However, we have preliminary results showing that there are no universal “optimal” TMP:S ratios and range of synergism observed depends on the sulfonamide used in combination.Objectives : characterize the relationship between drug concentrations and effect of TMP/S combination against E. coli by developing a semi-mechanistic PK/PD model based on time-kill data

    Levers to Improve Antibiotic Treatment of Lambs via Drinking Water in Sheep Fattening Houses: The Example of the Sulfadimethoxine/Trimethoprim Combination

    No full text
    To limit the spread of bacterial diseases in sheep fattening houses, antibiotics are often administered collectively. Collective treatments can be delivered by drinking water but data on the drug’s solubility in water or on plasma exposure of the animals are lacking. We first assessed the solubility of products containing sulfadimethoxine (SDM), associated or not with trimethoprim (TMP), in different waters. We then compared in lambs the SDM and TMP pharmacokinetic profiles after individual intravenous (IV) and oral administrations of SDM-TMP in experimental settings (n = 8) and after a collective treatment by drinking water with SDM-TMP or SDM alone in a sheep fattening house (n = 100 for each treatment). The individual water consumption during the collective treatments was also monitored to characterize the ingestion variability. We showed that TMP had a short terminal half-life and very low oral bioavailability, demonstrating that it would be unable to potentiate SDM by oral route. Conversely, SDM had a long terminal half-life of 18 h and excellent oral bioavailability. However, delivery by drinking water resulted in a very high interindividual variability of SDM plasma concentrations, meaning that although disease spread could be controlled at the group level, some individuals would inevitably be under- or over-exposed to the antibiotic
    corecore