2 research outputs found

    Clinical and molecular epidemiology of human bocavirus in respiratory and fecal samples from children in Hong Kong

    Get PDF
    Background. Human bocavirus (HBoV) is a recently discovered parvovirus associated with respiratory tract infections in children. We conducted the first systematic prospective clinical and molecular study using nasopharyngeal aspirates (NPAs) and fecal samples. Methods. NPAs negative for influenza virus, parainfluenza virus, respiratory syncytial virus, adenovirus, and coronavirus and fecal samples from patients with acute gastroenteritis were included. On the basis of results from a pilot study using 400 NPAs from all age groups, a prospective 12-month study was conducted to detect HBoV in 1200 NPAs and 1435 fecal samples from patients <18 years old by polymerase chain reaction. The complete genome sequences of HBoVs from 12 NPAs and 12 fecal samples were determined. Results. Of the 400 NPAs collected in the pilot study, 20 (5.0%) were found to contain HBoV, all from children <5 years old. In the subsequent prospective study of pediatric patients, HBoV was detected in 83 (6.9%) of 1200 NPAs. Upper and lower respiratory tract infections were equally common. HBoV was detected in 30 (2.1%) of 1435 fecal samples. Fever and watery diarrhea were the most common symptoms. The seasonality of HBoV in NPAs and fecal samples was similar. Codetection with other pathogens occurred in 33% and 56% of NPAs and fecal samples, respectively, from patients with HBoV infection. Genomes of HBoVs from NPAs and fecal samples displayed minimal sequence variations. Conclusions. HBoV was detected in fecal specimens in children with acute gastroenteritis. A single lineage of HBoV was associated with both respiratory tract and enteric infections. © 2007 by the Infectious Diseases Society of America. All rights reserved.published_or_final_versio

    In silico analysis of 16S rRNA gene sequencing based methods for identification of medically important aerobic Gram-negative bacteria

    No full text
    This study provides guidelines on the usefulness of full and 527 bp 16S rRNA gene sequencing and Microseq databases for identifying medically important aerobic Gram-negative bacteria. Overall, full and 527 bp 16S rRNA gene sequencing can identify 26.1% and 32.6%, respectively, of medically important aerobic Gram-negative bacteria confidently to the species level, whereas the full-MicroSeq and 500-MicroSeq databases can identify 15.2% and 26.1%, respectively, of medically important aerobic Gram-negative bacteria confidently to the species level. Among the major groups of aerobic Gram-negative bacteria, the methods and databases are least useful for identification of Aeromonas, Bordetella and Bartonella species. None of the Aeromonas species can be confidently or doubtfully identified, whereas only 0% and 0-33.3% of Bordetella species and 0-10% and 0-10% of Bartonella species can be confidently and doubtfully identified, respectively. On the other hand, these methods and databases are most useful for identification of members of the families Pasteurellaceae and Legionellaceae and Campylobacter species: 29.6-59.3% and 7.4-18.5% of members of Pasteurellaceae, 36-52% and 12-24% of members of Legionellaceae, and 26.7-60% and 0-13.3% of Campylobacter species can be confidently and doubtfully identified, respectively. Thirty-nine medically important aerobic Gram-negative bacteria that should be confidently identified by full 16S rRNA gene sequencing are not included in the full-MicroSeq database. Twenty-three medically important aerobic Gram-negative bacteria that should be confidently identified by 527 bp 16S rRNA gene sequencing are not included in the 500-MicroSeq database. Compared with results of our previous studies on anaerobic and Gram-positive bacteria, full and 527 bp 16S rRNA gene sequencing are able to confidently identify significantly more anaerobic Gram-positive and Gramnegative bacteria than aerobic Gram-positive and Gram-negative bacteria. © 2011 SGM.link_to_subscribed_fulltex
    corecore