4 research outputs found
Hypoxia induces telomerase reverse transcriptase (TERT) gene expression in non-tumor fish tissues in vivo: the marine medaka (Oryzias melastigma) model
BACKGROUND: Current understanding on the relationships between hypoxia, hypoxia-inducible factor-1 (HIF-1) and telomerase reverse transcriptase (TERT) gene expression are largely based on in vitro studies in human cancer cells. Although several reports demonstrated HIF-1- mediated upregulation of the human TERT gene under hypoxia, conflicting findings have also been reported. Thus far, it remains uncertain whether these findings can be directly extrapolated to non-tumor tissues in other whole animal systems in vivo. While fish often encounter environmental hypoxia, the in vivo regulation of TERT by hypoxia in non-neoplastic tissues of fish remains virtually unknown. RESULTS: The adult marine medaka (Oryzias melastigma) was employed as a model fish in this study. We have cloned and characterized a 3261-bp full-length TERT cDNA, omTERT, which encodes a protein of 1086 amino acids. It contains all of the functional motifs that are conserved in other vertebrate TERTs. Motif E is the most highly conserved showing 90.9–100% overall identity among the fish TERTs and 63.6% overall identity among vertebrates. Analysis of the 5'-flanking sequence of the omTERT gene identified two HRE (hypoxia-responsive element; nt. – 283 and – 892) cores. Overexpression of the HIF-1α induced omTERT promoter activity as demonstrated using transient transfection assays. The omTERT gene is ubiquitously expressed in fish under normoxia, albeit at varying levels, where highest expression was observed in gonads and the lowest in liver. In vivo expression of omTERT was significantly upregulated in testis and liver in response to hypoxia (at 96 h and 48 h, respectively), where concomitant induction of the omHIF-1α and erythropoietin (omEpo) genes was also observed. In situ hybridization analysis showed that hypoxic induction of omTERT mRNA was clearly evident in hepatocytes in the caudal region of liver and in spermatogonia-containing cysts in testis. CONCLUSION: This study demonstrates for the first time, hypoxic regulation of TERT expression in vivo in a whole fish system. Our findings support the notion that hypoxia upregulates omTERT expression via omHIF-1 in non-neoplastic fish liver and testis in vivo. Overall, the structure and regulation of the TERT gene is highly conserved in vertebrates from fish to human
Acoustic communication in butterflyfishes: Anatomical novelties, physiology, evolution, and behavioral ecology
Coral reef fishes live in noisy environments that may challenge their capacity for acoustic communication. Butterflyfishes (Family Chaetodontidae) are prominent and ecologically diverse members of coral reef communities worldwide. The discovery of a novel association of anterior swim bladder horns with the lateral line canal system in the genus Chaetodon (the laterophysic connection) revealed a putative adaptation for enhancement of sound reception by the lateral line system and/or the ear. Behavioral studies show that acoustic communication is an important component of butterflyfish social behavior. All bannerfish (Forcipiger, Heniochus, and Hemitaurichthys) and Chaetodon species studied thus far produce several sound types at frequencies of \u3c1 to \u3e1000 Hz. Ancestral character state analyses predict the existence of both shared (head bob) and divergent (tail slap) acoustic behaviors in these two clades. Experimental auditory physiology shows that butterflyfishes are primarily sensitive to stimuli associated with hydrodynamic particle accelerations of ≤500 Hz. In addition, the gas-filled swim bladder horns in Chaetodon are stimulated by sound pressure, which enhances and extends their auditory sensitivity to 1700–2000 Hz. The broadband spectrum of ambient noise present on coral reefs overlaps with the frequency characteristics of their sounds, thus both the close social affiliations common among butterflyfishes and the evolution of the swim bladder horns in Chaetodon facilitate their short-range acoustic communication. Butterflyfishes provide a unique and unexpected opportunity to carry out studies of fish bioacoustics in the lab and the field that integrate the study of sensory anatomy, physiology, evolution, and behavioral ecology