9 research outputs found

    Optimisation des inhibiteurs des bĂȘta-lactamases de la famille diazabicyclo-octane et conception d'une approche basĂ©e sur la spectromĂ©trie de masse pour explorer la polymĂ©risation du peptidoglycane

    No full text
    Le peptidoglycane (PG) forme un rĂ©seau covalent comprenant de chaĂźnes glycanes reliĂ©es par des peptides. Le PG est une cible validĂ©e pour dĂ©velopper de nouveaux antibiotiques parce que c’est un composant spĂ©cifique et essentiel des bactĂ©ries. En effet, les antibiotiques appartenant Ă  la famille des ÎČ-lactamines inactivent les protĂ©ines de liaisons Ă  la pĂ©nicilline (PLP) qui catalysent la derniĂšre Ă©tape de polymĂ©risation du PG. Un mĂ©canisme rĂ©pandu de rĂ©sistance est la production de ÎČ-lactamases (ÎČL) qui inactivent les ÎČ-lactamines. Une premiĂšre gĂ©nĂ©ration d’inhibiteurs de ÎČL a Ă©tĂ© basĂ©e sur le noyau ÎČ-lactame suivi par les diazabicyclooctanes (DBO) entrĂ©s sur le marchĂ© en 2015 avec l’avibactam. L’émergence de mutations compromettant l’efficacitĂ© des DBO nous a incitĂ©s Ă  Ă©tudier une sĂ©rie de dĂ©rivĂ©s obtenue par chimie click qui contenait un groupement triazole. Ce dernier s’est avĂ©rĂ© dĂ©favorable en raison de l’absence de la liaison hydrogĂšne reliant le carboxamide des DBO commercialisĂ©s au rĂ©sidu conservĂ© N132 des ÎČL. Cependant, la fonctionnalisation du triazole a partiellement restaurĂ© l’efficacitĂ© des DBO sans altĂ©rer leur pĂ©nĂ©tration. Les PLP peuvent ĂȘtre remplacĂ©es par des L,D-transpeptidases (LDT) entrainant une rĂ©sistance aux ÎČ-lactamines. Nous avons Ă©tudiĂ© le mode d’insertion de nouvelles sous-unitĂ©s dans le PG en expansion en dĂ©veloppant une nouvelle mĂ©thode basĂ©e sur le marquage avec des isotopes lourds et la spectromĂ©trie de masse. Nous rapportons les modes de polymĂ©risation du PG dans des souches utilisant des PBP et une LDT, seules ou en combinaison, et en prĂ©sence ou en absence de ÎČ-lactamine, ainsi que la participation du recyclage au mĂ©tabolisme du PG.Bacterial peptidoglycan (PG) is a mesh like structure comprising glycan strands cross-linked by peptide stems. Since PG is a specific and essential component of bacterial cells it is an attractive and validated target for antibacterial agents. Indeed, the first antibiotic in clinical use - the ÎČ-lactam penicillin - targets the enzymes catalyzing the final transpeptidation step of PG synthesis - the Penicillin-Binding-Proteins (PBPs). A prevalent mechanism of resistance to ÎČ-lactams is the production of ÎČ-lactamases (ÎČLs) that inactivate the drugs. A first generation of ÎČ-lactamase inhibitors (BLIs) was based on the ÎČ-lactam core followed by diazabicyclooctanes (DBOs), which entered the market in 2015 with avibactam. Emergence of mutations compromising the efficacy of DBOs prompted us to study a series of triazole-substituted DBOs that were obtained by click chemistry. The triazole ring was found to be disfavored due to the absence of a hydrogen bond connecting the carboxamide of marketed DBOs to the conserved N132 residue of ÎČLs. However, functionalization of the triazole partially restored inhibition efficacy without impairing drug penetration. Besides the major cross-links formed by PBPs, alternative cross-links are formed by the structurally distinct l,d-transpeptidases (LDTs) mediating resistance to several ÎČ-lactams. We investigated the mechanisms of insertion of new subunits into the expanding PG mesh by developing a method based on labeling with heavy isotopes and mass spectrometry. We report the modes of PG polymerization in strains relying on PBPs and LDTs for PG cross-linking in the presence or absence of ÎČ-lactams together with the extent of PG recycling

    Optimisation des inhibiteurs des bĂȘta-lactamases de la famille diazabicyclo-octane et conception d'une approche basĂ©e sur la spectromĂ©trie de masse pour explorer la polymĂ©risation du peptidoglycane

    No full text
    Bacterial peptidoglycan (PG) is a mesh like structure comprising glycan strands cross-linked by peptide stems. Since PG is a specific and essential component of bacterial cells it is an attractive and validated target for antibacterial agents. Indeed, the first antibiotic in clinical use - the ÎČ-lactam penicillin - targets the enzymes catalyzing the final transpeptidation step of PG synthesis - the Penicillin-Binding-Proteins (PBPs). A prevalent mechanism of resistance to ÎČ-lactams is the production of ÎČ-lactamases (ÎČLs) that inactivate the drugs. A first generation of ÎČ-lactamase inhibitors (BLIs) was based on the ÎČ-lactam core followed by diazabicyclooctanes (DBOs), which entered the market in 2015 with avibactam. Emergence of mutations compromising the efficacy of DBOs prompted us to study a series of triazole-substituted DBOs that were obtained by click chemistry. The triazole ring was found to be disfavored due to the absence of a hydrogen bond connecting the carboxamide of marketed DBOs to the conserved N132 residue of ÎČLs. However, functionalization of the triazole partially restored inhibition efficacy without impairing drug penetration. Besides the major cross-links formed by PBPs, alternative cross-links are formed by the structurally distinct l,d-transpeptidases (LDTs) mediating resistance to several ÎČ-lactams. We investigated the mechanisms of insertion of new subunits into the expanding PG mesh by developing a method based on labeling with heavy isotopes and mass spectrometry. We report the modes of PG polymerization in strains relying on PBPs and LDTs for PG cross-linking in the presence or absence of ÎČ-lactams together with the extent of PG recycling.Le peptidoglycane (PG) forme un rĂ©seau covalent comprenant de chaĂźnes glycanes reliĂ©es par des peptides. Le PG est une cible validĂ©e pour dĂ©velopper de nouveaux antibiotiques parce que c’est un composant spĂ©cifique et essentiel des bactĂ©ries. En effet, les antibiotiques appartenant Ă  la famille des ÎČ-lactamines inactivent les protĂ©ines de liaisons Ă  la pĂ©nicilline (PLP) qui catalysent la derniĂšre Ă©tape de polymĂ©risation du PG. Un mĂ©canisme rĂ©pandu de rĂ©sistance est la production de ÎČ-lactamases (ÎČL) qui inactivent les ÎČ-lactamines. Une premiĂšre gĂ©nĂ©ration d’inhibiteurs de ÎČL a Ă©tĂ© basĂ©e sur le noyau ÎČ-lactame suivi par les diazabicyclooctanes (DBO) entrĂ©s sur le marchĂ© en 2015 avec l’avibactam. L’émergence de mutations compromettant l’efficacitĂ© des DBO nous a incitĂ©s Ă  Ă©tudier une sĂ©rie de dĂ©rivĂ©s obtenue par chimie click qui contenait un groupement triazole. Ce dernier s’est avĂ©rĂ© dĂ©favorable en raison de l’absence de la liaison hydrogĂšne reliant le carboxamide des DBO commercialisĂ©s au rĂ©sidu conservĂ© N132 des ÎČL. Cependant, la fonctionnalisation du triazole a partiellement restaurĂ© l’efficacitĂ© des DBO sans altĂ©rer leur pĂ©nĂ©tration. Les PLP peuvent ĂȘtre remplacĂ©es par des L,D-transpeptidases (LDT) entrainant une rĂ©sistance aux ÎČ-lactamines. Nous avons Ă©tudiĂ© le mode d’insertion de nouvelles sous-unitĂ©s dans le PG en expansion en dĂ©veloppant une nouvelle mĂ©thode basĂ©e sur le marquage avec des isotopes lourds et la spectromĂ©trie de masse. Nous rapportons les modes de polymĂ©risation du PG dans des souches utilisant des PBP et une LDT, seules ou en combinaison, et en prĂ©sence ou en absence de ÎČ-lactamine, ainsi que la participation du recyclage au mĂ©tabolisme du PG

    Optimisation des inhibiteurs des bĂȘta-lactamases de la famille diazabicyclo-octane et conception d'une approche basĂ©e sur la spectromĂ©trie de masse pour explorer la polymĂ©risation du peptidoglycane

    No full text
    Bacterial peptidoglycan (PG) is a mesh like structure comprising glycan strands cross-linked by peptide stems. Since PG is a specific and essential component of bacterial cells it is an attractive and validated target for antibacterial agents. Indeed, the first antibiotic in clinical use - the ÎČ-lactam penicillin - targets the enzymes catalyzing the final transpeptidation step of PG synthesis - the Penicillin-Binding-Proteins (PBPs). A prevalent mechanism of resistance to ÎČ-lactams is the production of ÎČ-lactamases (ÎČLs) that inactivate the drugs. A first generation of ÎČ-lactamase inhibitors (BLIs) was based on the ÎČ-lactam core followed by diazabicyclooctanes (DBOs), which entered the market in 2015 with avibactam. Emergence of mutations compromising the efficacy of DBOs prompted us to study a series of triazole-substituted DBOs that were obtained by click chemistry. The triazole ring was found to be disfavored due to the absence of a hydrogen bond connecting the carboxamide of marketed DBOs to the conserved N132 residue of ÎČLs. However, functionalization of the triazole partially restored inhibition efficacy without impairing drug penetration. Besides the major cross-links formed by PBPs, alternative cross-links are formed by the structurally distinct l,d-transpeptidases (LDTs) mediating resistance to several ÎČ-lactams. We investigated the mechanisms of insertion of new subunits into the expanding PG mesh by developing a method based on labeling with heavy isotopes and mass spectrometry. We report the modes of PG polymerization in strains relying on PBPs and LDTs for PG cross-linking in the presence or absence of ÎČ-lactams together with the extent of PG recycling.Le peptidoglycane (PG) forme un rĂ©seau covalent comprenant de chaĂźnes glycanes reliĂ©es par des peptides. Le PG est une cible validĂ©e pour dĂ©velopper de nouveaux antibiotiques parce que c’est un composant spĂ©cifique et essentiel des bactĂ©ries. En effet, les antibiotiques appartenant Ă  la famille des ÎČ-lactamines inactivent les protĂ©ines de liaisons Ă  la pĂ©nicilline (PLP) qui catalysent la derniĂšre Ă©tape de polymĂ©risation du PG. Un mĂ©canisme rĂ©pandu de rĂ©sistance est la production de ÎČ-lactamases (ÎČL) qui inactivent les ÎČ-lactamines. Une premiĂšre gĂ©nĂ©ration d’inhibiteurs de ÎČL a Ă©tĂ© basĂ©e sur le noyau ÎČ-lactame suivi par les diazabicyclooctanes (DBO) entrĂ©s sur le marchĂ© en 2015 avec l’avibactam. L’émergence de mutations compromettant l’efficacitĂ© des DBO nous a incitĂ©s Ă  Ă©tudier une sĂ©rie de dĂ©rivĂ©s obtenue par chimie click qui contenait un groupement triazole. Ce dernier s’est avĂ©rĂ© dĂ©favorable en raison de l’absence de la liaison hydrogĂšne reliant le carboxamide des DBO commercialisĂ©s au rĂ©sidu conservĂ© N132 des ÎČL. Cependant, la fonctionnalisation du triazole a partiellement restaurĂ© l’efficacitĂ© des DBO sans altĂ©rer leur pĂ©nĂ©tration. Les PLP peuvent ĂȘtre remplacĂ©es par des L,D-transpeptidases (LDT) entrainant une rĂ©sistance aux ÎČ-lactamines. Nous avons Ă©tudiĂ© le mode d’insertion de nouvelles sous-unitĂ©s dans le PG en expansion en dĂ©veloppant une nouvelle mĂ©thode basĂ©e sur le marquage avec des isotopes lourds et la spectromĂ©trie de masse. Nous rapportons les modes de polymĂ©risation du PG dans des souches utilisant des PBP et une LDT, seules ou en combinaison, et en prĂ©sence ou en absence de ÎČ-lactamine, ainsi que la participation du recyclage au mĂ©tabolisme du PG

    Optimisation des inhibiteurs des bĂȘta-lactamases de la famille diazabicyclo-octane et conception d'une approche basĂ©e sur la spectromĂ©trie de masse pour explorer la polymĂ©risation du peptidoglycane

    No full text
    Bacterial peptidoglycan (PG) is a mesh like structure comprising glycan strands cross-linked by peptide stems. Since PG is a specific and essential component of bacterial cells it is an attractive and validated target for antibacterial agents. Indeed, the first antibiotic in clinical use - the ÎČ-lactam penicillin - targets the enzymes catalyzing the final transpeptidation step of PG synthesis - the Penicillin-Binding-Proteins (PBPs). A prevalent mechanism of resistance to ÎČ-lactams is the production of ÎČ-lactamases (ÎČLs) that inactivate the drugs. A first generation of ÎČ-lactamase inhibitors (BLIs) was based on the ÎČ-lactam core followed by diazabicyclooctanes (DBOs), which entered the market in 2015 with avibactam. Emergence of mutations compromising the efficacy of DBOs prompted us to study a series of triazole-substituted DBOs that were obtained by click chemistry. The triazole ring was found to be disfavored due to the absence of a hydrogen bond connecting the carboxamide of marketed DBOs to the conserved N132 residue of ÎČLs. However, functionalization of the triazole partially restored inhibition efficacy without impairing drug penetration. Besides the major cross-links formed by PBPs, alternative cross-links are formed by the structurally distinct l,d-transpeptidases (LDTs) mediating resistance to several ÎČ-lactams. We investigated the mechanisms of insertion of new subunits into the expanding PG mesh by developing a method based on labeling with heavy isotopes and mass spectrometry. We report the modes of PG polymerization in strains relying on PBPs and LDTs for PG cross-linking in the presence or absence of ÎČ-lactams together with the extent of PG recycling.Le peptidoglycane (PG) forme un rĂ©seau covalent comprenant de chaĂźnes glycanes reliĂ©es par des peptides. Le PG est une cible validĂ©e pour dĂ©velopper de nouveaux antibiotiques parce que c’est un composant spĂ©cifique et essentiel des bactĂ©ries. En effet, les antibiotiques appartenant Ă  la famille des ÎČ-lactamines inactivent les protĂ©ines de liaisons Ă  la pĂ©nicilline (PLP) qui catalysent la derniĂšre Ă©tape de polymĂ©risation du PG. Un mĂ©canisme rĂ©pandu de rĂ©sistance est la production de ÎČ-lactamases (ÎČL) qui inactivent les ÎČ-lactamines. Une premiĂšre gĂ©nĂ©ration d’inhibiteurs de ÎČL a Ă©tĂ© basĂ©e sur le noyau ÎČ-lactame suivi par les diazabicyclooctanes (DBO) entrĂ©s sur le marchĂ© en 2015 avec l’avibactam. L’émergence de mutations compromettant l’efficacitĂ© des DBO nous a incitĂ©s Ă  Ă©tudier une sĂ©rie de dĂ©rivĂ©s obtenue par chimie click qui contenait un groupement triazole. Ce dernier s’est avĂ©rĂ© dĂ©favorable en raison de l’absence de la liaison hydrogĂšne reliant le carboxamide des DBO commercialisĂ©s au rĂ©sidu conservĂ© N132 des ÎČL. Cependant, la fonctionnalisation du triazole a partiellement restaurĂ© l’efficacitĂ© des DBO sans altĂ©rer leur pĂ©nĂ©tration. Les PLP peuvent ĂȘtre remplacĂ©es par des L,D-transpeptidases (LDT) entrainant une rĂ©sistance aux ÎČ-lactamines. Nous avons Ă©tudiĂ© le mode d’insertion de nouvelles sous-unitĂ©s dans le PG en expansion en dĂ©veloppant une nouvelle mĂ©thode basĂ©e sur le marquage avec des isotopes lourds et la spectromĂ©trie de masse. Nous rapportons les modes de polymĂ©risation du PG dans des souches utilisant des PBP et une LDT, seules ou en combinaison, et en prĂ©sence ou en absence de ÎČ-lactamine, ainsi que la participation du recyclage au mĂ©tabolisme du PG

    Heavy isotope labeling and mass spectrometry reveal unexpected remodeling of bacterial cell wall expansion in response to drugs

    No full text
    International audienceAntibiotics of the ÎČ-lactam (penicillin) family inactivate target enzymes called D,D-transpeptidases or penicillin-binding proteins (PBPs) that catalyze the last cross-linking step of peptidoglycan synthesis. The resulting net-like macromolecule is the essential component of bacterial cell walls that sustains the osmotic pressure of the cytoplasm. In Escherichia coli , bypass of PBPs by the YcbB L,D-transpeptidase leads to resistance to these drugs. We developed a new method based on heavy isotope labeling and mass spectrometry to elucidate PBP- and YcbB-mediated peptidoglycan polymerization. PBPs and YcbB similarly participated in single-strand insertion of glycan chains into the expanding bacterial side wall. This absence of any transpeptidase-specific signature suggests that the peptidoglycan expansion mode is determined by other components of polymerization complexes. YcbB did mediate ÎČ-lactam resistance by insertion of multiple strands that were exclusively cross-linked to existing tripeptide-containing acceptors. We propose that this undocumented mode of polymerization depends upon accumulation of linear glycan chains due to PBP inactivation, formation of tripeptides due to cleavage of existing cross-links by a ÎČ-lactam-insensitive endopeptidase, and concerted cross-linking by YcbB

    DIAZABICYCLOOCTANE FUNCTIONALIZATION FOR INHIBITION OF -LACTAMASES FROM ENTEROBACTERIA

    No full text
    International audienceSecond-generation-lactamase inhibitors containing a dia abic clooctane (DBO) scaffold restore the activit of-lactams against pathogenic bacteria, including those producing class A, C, and D en mes that are not susceptible to first-generation inhibitors containing a-lactam ring. Here, e report optimi ation of a s nthetic route to access tria ole-containing DBOs and biological evaluation of a series of 17 compounds for inhibition of five-lactamases representative of en mes found in pathogenic Gram-negative bacteria. A strong correlation (Spearman coefficient of 0.87; = 4.7 10-21) as observed bet een the inhibition efficac of purified-lactamases and the potentiation of-lactam antibacterial activit indicating that DBO functionali ation did not impair penetration. In comparison to reference DBOs, avibactam and relebactam, our compounds displa ed reduced efficac likel due to the absence of h drogen bonding ith a conserved asparagine residue at position 132. This as partiall compensated b additional interactions involving certain tria ole substituents

    StatProofBook/StatProofBook.github.io: StatProofBook 2022

    No full text
    <h3>The Book of Statistical Proofs, as of 2022</h3> <p><strong>Release Date:</strong> December 29, 2022 – <a href="https://github.com/StatProofBook/StatProofBook.github.io/tree/875c9a3651314aa5ff9441b9e203e6cbae0da471">browse repository at this point in time</a></p> <p><strong>Statistics:</strong> 6 <a href="https://statproofbook.github.io/I/PbA">Authors</a> – 186 <a href="https://statproofbook.github.io/I/DbN">Definitions</a> – 400 <a href="https://statproofbook.github.io/I/PbN">Proofs</a> – 586 <a href="https://statproofbook.github.io/I/ToC">Items in total</a> – 654 <a href="https://github.com/StatProofBook/StatProofBookTools/blob/5379d5b6cdd626a3aa47886edc172e1af5e3bded/write_book/StatProofBook.pdf">PDF pages</a></p> <p><strong>Links:</strong> <a href="https://statproofbook.github.io/">Website</a> – <a href="https://github.com/StatProofBook/StatProofBook.github.io/wiki">Wiki</a> – <a href="https://github.com/StatProofBook">GitHub</a> – <a href="https://twitter.com/StatProofBook">Twitter</a> – <a href="mailto:[email protected]">GMail</a></p&gt

    Pharmacological profile and efficiency in vivo of diflapolin, the first dual inhibitor of 5-lipoxygenase-activating protein and soluble epoxide hydrolase

    Get PDF
    Abstract Arachidonic acid (AA) is metabolized to diverse bioactive lipid mediators. Whereas the 5-lipoxygenase-activating protein (FLAP) facilitates AA conversion by 5-lipoxygenase (5-LOX) to pro-inflammatory leukotrienes (LTs), the soluble epoxide hydrolase (sEH) degrades anti-inflammatory epoxyeicosatrienoic acids (EETs). Accordingly, dual FLAP/sEH inhibition might be advantageous drugs for intervention of inflammation. We present the in vivo pharmacological profile and efficiency of N-[4-(benzothiazol-2-ylmethoxy)-2-methylphenyl]-Nâ€Č-(3,4-dichlorophenyl)urea (diflapolin) that dually targets FLAP and sEH. Diflapolin inhibited 5-LOX product formation in intact human monocytes and neutrophils with IC50 = 30 and 170 nM, respectively, and suppressed the activity of isolated sEH (IC50 = 20 nM). Characteristic for FLAP inhibitors, diflapolin (I) failed to inhibit isolated 5-LOX, (II) blocked 5-LOX product formation in HEK cells only when 5-LOX/FLAP was co-expressed, (III) lost potency in intact cells when exogenous AA was supplied, and (IV) prevented 5-LOX/FLAP complex assembly in leukocytes. Diflapolin showed target specificity, as other enzymes related to AA metabolism (i.e., COX1/2, 12/15-LOX, LTA4H, LTC4S, mPGES1, and cPLA2) were not inhibited. In the zymosan-induced mouse peritonitis model, diflapolin impaired vascular permeability, inhibited cysteinyl-LTs and LTB4 formation, and suppressed neutrophil infiltration. Diflapolin is a highly active dual FLAP/sEH inhibitor in vitro and in vivo with target specificity to treat inflammation-related diseases
    corecore