159 research outputs found
The recombinase protein is a torque sensitive molecular switch
How a nano-searcher finds its nano-target is a general problem in non-equilibrium statistical physics. It becomes vital when the searcher is a damaged DNA fragment trying to find its counterpart on the intact homologous chromosome. If the two copies are paired, that intact homologous sequence serves as a template to reconstitute the damaged DNA sequence, enabling the cell to survive without genetic mutations. To succeed, the search must stop only when the perfect homology is found. The biological process that ensures such a genomic integrity is called Homologous Recombination and is promoted by the Recombinase proteins. In this article, we use torque-sensitive magnetic tweezers to measure the free-energy landscape of the human Recombinase hRad51 protein assembled a DNA fragment. Based on our measurements we model the hRad51/DNA complex as an out-of-equilibrium two-state system and provide a thermodynamical description of Homologous Recombination. With this dynamical two-state model, we suggest a mechanism by which the recombinase proteins discriminate between homologous and a non-homologous sequences
Capturing Shape Information with Multi-Scale Topological Loss Terms for 3D Reconstruction
Reconstructing 3D objects from 2D images is both challenging for our brains
and machine learning algorithms. To support this spatial reasoning task,
contextual information about the overall shape of an object is critical.
However, such information is not captured by established loss terms (e.g. Dice
loss). We propose to complement geometrical shape information by including
multi-scale topological features, such as connected components, cycles, and
voids, in the reconstruction loss. Our method uses cubical complexes to
calculate topological features of 3D volume data and employs an optimal
transport distance to guide the reconstruction process. This topology-aware
loss is fully differentiable, computationally efficient, and can be added to
any neural network. We demonstrate the utility of our loss by incorporating it
into SHAPR, a model for predicting the 3D cell shape of individual cells based
on 2D microscopy images. Using a hybrid loss that leverages both geometrical
and topological information of single objects to assess their shape, we find
that topological information substantially improves the quality of
reconstructions, thus highlighting its ability to extract more relevant
features from image datasets.Comment: Accepted at the 25th International Conference on Medical Image
Computing and Computer Assisted Intervention (MICCAI
Probing Rad51-DNA interactions by changing DNA twist
In eukaryotes, Rad51 protein is responsible for the recombinational repair of double-strand DNA breaks. Rad51 monomers cooperatively assemble on exonuclease-processed broken ends forming helical nucleo-protein filaments that can pair with homologous regions of sister chromatids. Homologous pairing allows the broken ends to be reunited in a complex but error-free repair process. Rad51 protein has ATPase activity but its role is poorly understood, as homologous pairing is independent of adenosine triphosphate (ATP) hydrolysis. Here we use magnetic tweezers and electron microscopy to investigate how changes of DNA twist affect the structure of Rad51-DNA complexes and how ATP hydrolysis participates in this process. We show that Rad51 protein can bind to double-stranded DNA in two different modes depending on the enforced DNA twist. The stretching mode is observed when DNA is unwound towards a helical repeat of 18.6 bp/turn, whereas a non-stretching mode is observed when DNA molecules are not permitted to change their native helical repeat. We also show that the two forms of complexes are interconvertible and that by enforcing changes of DNA twist one can induce transitions between the two forms. Our observations permit a better understanding of the role of ATP hydrolysis in Rad51-mediated homologous pairing and strand exchang
Effects of a 6-week Low-Carbohydrate High-Fat Diet on Lipid Profiles in Competitive Recreational Distance Runners
Click the PDF icon to download the abstract
Effects of a Low Carbohydrate Diet Versus a High Carbohydrate Diet on 5-km Running Performance
Click the PDF icon to download the abstract
Factors Affecting the FcRn-Mediated Transplacental Transfer of Antibodies and Implications for Vaccination in Pregnancy.
At birth, neonates are particularly vulnerable to infection and transplacental transfer of immunoglobulin G (IgG) from mother to fetus provides crucial protection in the first weeks of life. Transcytosis of IgG occurs via binding with the neonatal Fc receptor (FcRn) in the placental synctiotrophoblast. As maternal vaccination becomes an increasingly important strategy for the protection of young infants, improving our understanding of transplacental transfer and the factors that may affect this will become increasingly important, especially in low-income countries where the burden of morbidity and mortality is highest. This review highlights factors of relevance to maternal vaccination that may modulate placental transfer-IgG subclass, glycosylation of antibody, total maternal IgG concentration, maternal disease, infant gestational age, and birthweight-and outlines the conflicting evidence and questions that remain regarding the complexities of these relationships. Furthermore, the intricacies of the Ab-FcRn interaction remain poorly understood and models that may help address future research questions are described
Properties of Bread Dough with Added Fiber Polysaccharides and Phenolic Antioxidants: A Review
During breadmaking, different ingredients are used to ensure the development of a continuous protein network that is essential for bread quality. Interests in incorporating bioactive ingredients such as dietary fiber (DF) and phenolic antioxidants into popular foods such as bread have grown rapidly, due to the increased consumer health awareness. The added bioactive ingredients may or may not promote the protein cross-links. Appropriate cross-links among wheat proteins, fiber polysaccharides, and phenolic antioxidants could be the most critical factor for bread dough enhanced with DF and phenolic antioxidants. Such cross-links may influence the structure and properties of a bread system during baking. This article presents a brief overview of our current knowledge of the fate of the key components (wheat proteins, fibers, and phenolic antioxidants) and how they might interact during bread dough development and baking
Force and torque in magnetic tweezers : energy landscape of the protein hRad51 on double-stranded DNA
Hautement conservé, de la bactérie jusqu'à l’Homme, la recombinaison homologue est indispensable à la survie de tout organisme vivant. Chez l’humain, la protéine hRad51 (human Rad51) y joue un rôle clé en s’autoassemblant au site de cassure sur les extrémités simple-brin d’une molécule d’ADN endommagée pour former le filament nucléoprotéique. Ce filament est capable à lui seul d’effectuer la plupart des opérations nécessaires au bon déroulement de la recombinaison homologue; il va permettre la reconnaissance d’homologie, l’appariement des séquences homologues et l’invasion de brins requise pour la synthèse de l’ADN manquant.La recombinaison homologue est un processus complexe impliquant de multiples partenaires. Pour mieux comprendre le rôle du filament nucléoprotéique au sein de la réaction, on se propose d’étudier ce dernier en l’absence de tout partenaire. Plus précisément, on observe le comportement mécanique de filaments hRad51-ADNdb en fonction des conditions chimiques. La formation du filament nucléoprotéique modifie la conformation de l’ADN sur lequel il s’assemble, l’allongeant de 50% et le déroulant de 43% dans le cas d’une molécule double-brin. Les pinces magnétiques sont un outil permettant de contrôler la force et la torsion appliquées à une unique molécule d’ADN double-brin (ADNdb), elles sont donc l’outil idéal pour sonder les propriétés mécaniques de filaments nucléoprotéiques. Le système des pinces magnétiques a été modifié afin de mesurer des paramètres mécaniques précédemment inaccessibles tel que le couple ressenti ou exercé par le filament. Le but de cette thèse a été d’étudier les propriétés mécano-chimiques des filaments nucléoprotéiques tout en essayant de tracer le paysage énergétique qui régit les transitions de ces systèmes.Highly conserved throughout the species, homologous recombination is crucial to the survival of any living organism. In humans, the hRad51 protein (human Rad51) plays a key role by self-assembling at the break site on the single stranded extremities of damaged DNA molecules thus forming the nucleoprotein filament. This filament is able by itself to accomplish most of the necessary operations of homologous recombination; it allows the homology search, the pairing of the homologous sequences and the strand exchange.Homologous recombination is a complex process involving many partners. In order to better understand the role of the nucleoprotein filament in this process, we propose to study it in the absence of any partners. We will focus on the study of the mechanical properties of hRad51-dsDNA filaments as a function of chemical conditions. The formation of the nucleoprotein filament modifies the conformation of the DNA molecule on which it assembles, stretching it by 50% and unwinding it by 43% in the case of a double stranded DNA. The magnetic tweezers are a tool allowing the control of the force and torsion applied to a single dsDNA molecule; they are therefore the ideal tool to probe the mechanical properties of nucleoprotein filaments. We modified the magnetic tweezers as to allow the measurement of previously inaccessible mechanical parameters such as the torque applied or felt by the filament. The goal of this thesis has been to study the mechano-chemical properties of nucleoprotein filaments while drawing the energy landscape that governs the various transitions of these systems
- …