2,259 research outputs found

    Water-Splitting Photoelectrolysis Reaction Rate via Microscopic Imaging of Evolved Oxygen Bubbles

    Get PDF
    Bubble formation and growth on a water-splitting semiconductor photoelectrode under illumination with above-bandgap radiation provide a direct measurement of the gas-evolving reaction rate. Optical microscopy was used to record the bubble growth on single-crystal strontium titanate immersed in basic aqueous electrolyte and illuminated with UV light at 351/364 nm from a focused argon laser. By analyzing the bubble size as a function of time, the water-splitting reaction rate was determined for varying light intensities and was compared to photocurrent measurements. Bubble nucleation was explored on an illuminated flat surface, as well as the subsequent light scattering and electrode shielding due to the bubble. This technique allows a quantitative examination of the actual gas evolution rate during photoelectrochemical water splitting, independent of current measurements

    Strain modification in coherent Ge and SixGe1–x epitaxial films by ion-assisted molecular beam epitaxy

    Get PDF
    We have observed large changes in Ge and SixGe1–x layer strain during concurrent molecular beam epitaxial growth and low-energy bombardment. Layers are uniformly strained, coherent with the substrate, and contain no dislocations, suggesting that misfit strain is accommodated by free volume changes associated with injection of ion bombardment induced point defects. The dependence of layer strain on ion energy, ion-atom flux ratio, and temperature is consistent with the presence of a uniform dispersion of point defects at high concentration. Implications for distinguishing ion-surface interactions from ion-bulk interactions are discussed

    Microphotonic parabolic light directors fabricated by two-photon lithography

    Get PDF
    We have fabricated microphotonic parabolic light directors using two-photon lithography, thin-film processing, and aperture formation by focused ion beam lithography. Optical transmission measurements through upright parabolic directors 22 μm high and 10 μm in diameter exhibit strong beam directivity with a beam divergence of 5.6°, in reasonable agreement with ray-tracing and full-field electromagnetic simulations. The results indicate the suitability of microphotonic parabolic light directors for producing collimated beams for applications in advanced solar cell and light-emitting diode designs

    Reflection high-energy electron diffraction analysis of polycrystalline films with grain size and orientation distributions

    Get PDF
    We report a computationally efficient algorithm to calculate reflection high-energy electron diffraction (RHEED) intensities from well-textured, small-grained polycrystalline films in the kinematic limit. We also show how the intensity maps of the spots in a RHEED pattern from such a film can be quantitatively analyzed to determine the film's average grain size, as well as its in-plane orientation and texture distributions. We find that the in-plane orientation and texture distribution widths of these films can be determined to within 1 degree and that the average lateral grain size can be measured to within a fraction of a nanometer after suitable calibration of our technique

    Quantitative Determination of Enhanced and Suppressed Transmission through Subwavelength Slit Arrays in Silver Films

    Get PDF
    Measurement of the transmitted intensity from a coherent monomode light source through a series of subwavelength slit arrays in Ag films, with varying array pitch and number of slits, demonstrate enhancement (suppression) by as much as a factor of 6 (9) when normalized to that of an isolated slit. Pronounced minima in the transmitted intensity were observed at array pitches corresponding to lambda_SPP, 2lambda_SPP, and 3lambda_SPP where lambda_SPP is the wavelength of the surface plasmon polariton (SPP). Increasing the number of slits to more than four does not increase appreciably the per-slit transmission intensity. These results are consistent with a model for interference between SPPs and the incident wave that fits well the measured transmitted intensity profile.Comment: Figure 4 update

    Alien Registration- Atwater, Margaret J. (Canton, Oxford County)

    Get PDF
    https://digitalmaine.com/alien_docs/13182/thumbnail.jp

    Size-dependent oxygen-related electronic states in silicon nanocrystals

    Get PDF
    Silicon nanocrystals embedded in SiO2 were isolated with a selective etching procedure, and the isolated nanocrystals' excitonic emission energy was studied during controlled oxidation. Nanocrystals having initial diameters, d(0), of similar to 2.9-3.4 nm showed a photoluminescence (PL) blueshift upon oxidatively induced size reduction, as expected from models of quantum confinement. Oxidation of smaller Si nanocrystals (d(0)similar to 2.5-2.8 nm) also initially resulted in a PL blueshift, but a redshift in the PL was then observed after growth of similar to 0.3 monolayers of native oxide. This decrease in excitonic emission energy during oxidation is consistent with the theoretically predicted formation of an oxygen-related excitonic recombination state

    Photoluminescence quantum efficiency of dense silicon nanocrystal ensembles in SiO2

    Get PDF
    The photoluminescence decay characteristics of silicon nanocrystals in dense ensembles fabricated by ion implantation into silicon dioxide are observed to vary in proportion to the calculated local density of optical states. A comparison of the experimental 1/e photoluminescence decay rates to the expected spontaneous emission rate modification yields values for the internal quantum efficiency and the intrinsic radiative decay rate of silicon nanocrystals. A photoluminescence quantum efficiency as high as 59%±9% is found for nanocrystals emitting at 750 nm at low excitation power. A power dependent nonradiative decay mechanism reduces the quantum efficiency at high pump intensity

    Leader distance: A review and a proposed theory

    Get PDF
    The concept of leader distance has been subsumed in a number of leadership theories; however, with few exceptions, leadership scholars have not expressly defined nor discussed leader distance, how distance is implicated in the legitimization of a leader, and how distance affects leader outcomes. We review available literature and demonstrate that integral to untangling the dynamics of the leadership influencing process is an understanding of leader-follower distance. We present distance in terms of three independent dimensions: leader-follower physical distance, perceived social distance, and perceived task interaction frequency. We discuss possible antecedents of leader-follower distance, including organizational and task characteristics, national culture, and leader/follower implicit motives. Finally, we use configural theory to present eight typologies (i.e., coexistence of a cluster or constellation of independent factors serving as a unit of analysis) of leader distance and propose an integrated cross-level model of leader distance, linking the distance typologies to leader outcomes at the individual and group levels of analysis

    Bicarbonate or Carbonate Processes for Coupling Carbon Dioxide Capture and Electrochemical Conversion

    Get PDF
    Designing a scalable system to capture CO₂ from the air and convert it into valuable chemicals, fuels, and materials could be transformational for mitigating climate change. Climate models predict that negative greenhouse gas emissions will be required by the year 2050 in order to stay below a 2 °C change in global temperature. The processes of CO₂ capture, CO₂ conversion, and finally product separation all require significant energy inputs; devising a system that simultaneously minimizes the energy required for all steps is an important challenge. To date, a variety of prototype or pilot-level CO₂ capture and/or conversion systems have been designed and built targeting the individual objectives of either capture or conversion. One approach has focused on CO₂ removal from the atmosphere and storage of pure pressurized CO₂. Other efforts have concentrated on CO₂ conversion processes, such as electrochemical reduction or fermentation. Only a few concepts or analyses have been developed for complete end-to-end processes that perform both CO₂ capture and transformation
    corecore