6,882 research outputs found
Bending light to our will
This article is based on the Fred Kavli Distinguished Lectureship in Nanoscience presentation given by
Harry Atwater (California Institute of Technology) on April 5, 2010 at the Materials Research Society Spring Meeting in San Francisco, CA. The Kavli Foundation supports scientific research, honors scientific achievement, and promotes public understanding of scientists and their work. Its particular focuses are astrophysics, nanoscience, and neuroscience.
Solar energy is currently enjoying substantial growth and investment, owing to worldwide sensitivity to energy security and climate change. Solar energy is an inexhaustible resource and is in abundant supply on all continents of the world. The power density of sunlight (~1000 W/m 2 ) and the effi ciency of photovoltaic devices (~10–25%) are high enough so that land use does not limit photovoltaic deployment at the terawatt scale. However solar photovoltaics are currently too expensive to achieve parity with other forms of electricity generation based on
fossil fuels. This is largely due to the cost (and for some cases, the abundance) of materials used in photovoltaic modules and systems, and the cost of deploying in current form. This economic and social context has created the present situation where there is widespread interest in photovoltaic technology for power generation, but the cumulative installed world capacity for photovoltaics is <50 GW, and it appears to be very challenging for photovoltaics to play a very substantial role in large-scale (terawatt) electricity generation in the short term
Plasmonics: Chip-based component devices and metamaterials
Dispersion control and active materials integration have yielded plasmonic components including i) three-dimensional single layer plasmonic metamaterials ii) all-optical, electro-optic and field effect modulation of plasmon propagation iii) plasmon-enhanced absorption in solar cells
Cooperative behavior of quantum dipole emitters coupled to a zero-index nanoscale waveguide
We study cooperative behavior of quantum dipole emitters coupled to a
rectangular waveguide with dielectric core and silver cladding. We investigate
cooperative emission and inter-emitter entanglement generation phenomena for
emitters whose resonant frequencies are near the frequency cutoff of the
waveguide, where the waveguide effectively behaves as zero-index metamaterial.
We show that coupling emitters to a zero-index waveguide allows one to relax
the constraint on precision positioning of emitters for observing inter-emitter
entanglement generation and extend the spatial scale at which the superradiance
can be observed
Plasmonic Rainbow Trapping Structures for Light Localization and Spectrum Splitting
“Rainbow trapping” has been proposed as a scheme for localized storage of broadband electromagnetic radiation in metamaterials and plasmonic heterostructures. Here, we articulate the dispersion and power flow characteristics of rainbow trapping structures, and show that tapered waveguide structures composed of dielectric core and metal cladding are best suited for light trapping. A metal-insulator-metal taper acts as a cascade of optical cavities with different resonant frequencies, exhibiting a large quality factor and small effective volume comparable to conventional plasmonic resonators
Measurement of the direct energy gap of coherently strained Sn_xGe_(1–x)/Ge(001) heterostructures
The direct energy gap has been measured for coherently strained Sn_xGe_(1–x) alloys on Ge(001) substrates with 0.035 < x < 0.115 and film thickness 50–200 nm. The energy gap determined from infrared transmittance data for coherently strained Sn_xGe_(1–x) alloys indicates a large alloy contribution and a small strain contribution to the decrease in direct energy gap with increasing Sn composition. These results are consistent with a deformation potential model for changes in the valence and conduction band density of states with coherency strain for this alloy system
Water-Splitting Photoelectrolysis Reaction Rate via Microscopic Imaging of Evolved Oxygen Bubbles
Bubble formation and growth on a water-splitting semiconductor photoelectrode under illumination with above-bandgap radiation provide a direct measurement of the gas-evolving reaction rate. Optical microscopy was used to record the bubble growth on single-crystal strontium titanate immersed in basic aqueous electrolyte and illuminated with UV light at 351/364 nm from a focused argon laser. By analyzing the bubble size as a function of time, the water-splitting reaction rate was determined for varying light intensities and was compared to photocurrent measurements. Bubble nucleation was explored on an illuminated flat surface, as well as the subsequent light scattering and electrode shielding due to the bubble. This technique allows a quantitative examination of the actual gas evolution rate during photoelectrochemical water splitting, independent of current measurements
Design of a film surface roughness-minimizing molecular beam epitaxy
Molecular beam epitaxy of germanium was used along with kinetic Monte Carlo simulations to study time-varying processing parameters and their effect on surface morphology. Epitaxial Ge films were deposited on highly oriented Ge(001) substrates, with reflection high-energy electron diffraction as a real-time sensor. The Monte Carlo simulations were used to model the growth process, and physical parameters were determined during growth under time-varying flux. A reduced version of the simulations was generated, enabling the application on an optimization algorithm. Temperature profiles were then computed that minimize surface roughness subject to various experimental constraints. The final roughness after two layers of growth was reduced to 0.32, compared to 0.36 at the maximum growth temperature. The study presented here is an initial demonstration of a general approach that could also be used to optimize properties in other materials and deposition processes
Purcell Enhancement of Parametric Luminescence: Bright and Broadband Nonlinear Light Emission in Metamaterials
Single-photon and correlated two-photon sources are important elements for
optical information systems. Nonlinear downconversion light sources are robust
and stable emitters of single photons and entangled photon pairs. However, the
rate of downconverted light emission, dictated by the properties of
low-symmetry nonlinear crystals, is typically very small, leading to
significant constrains in device design and integration. In this paper, we show
that the principles for spontaneous emission control (i.e. Purcell effect) of
isolated emitters in nanoscale structures, such as metamaterials, can be
generalized to describe the enhancement of nonlinear light generation processes
such as parametric down conversion. We develop a novel theoretical framework
for quantum nonlinear emission in a general anisotropic, dispersive and lossy
media. We further find that spontaneous parametric downconversion in media with
hyperbolic dispersion is broadband and phase-mismatch-free. We predict a
1000-fold enhancement of the downconverted emission rate with up to 105 photon
pairs per second in experimentally realistic nanostructures. Our theoretical
formalism and approach to Purcell enhancement of nonlinear optical processes,
provides a framework for description of quantum nonlinear optical phenomena in
complex nanophotonic structures.Comment: 29 pages, 10 figure
- …