11,370 research outputs found

    Face Identification and Clustering

    Full text link
    In this thesis, we study two problems based on clustering algorithms. In the first problem, we study the role of visual attributes using an agglomerative clustering algorithm to whittle down the search area where the number of classes is high to improve the performance of clustering. We observe that as we add more attributes, the clustering performance increases overall. In the second problem, we study the role of clustering in aggregating templates in a 1:N open set protocol using multi-shot video as a probe. We observe that by increasing the number of clusters, the performance increases with respect to the baseline and reaches a peak, after which increasing the number of clusters causes the performance to degrade. Experiments are conducted using recently introduced unconstrained IARPA Janus IJB-A, CS2, and CS3 face recognition datasets

    Model Complexity-Accuracy Trade-off for a Convolutional Neural Network

    Full text link
    Convolutional Neural Networks(CNN) has had a great success in the recent past, because of the advent of faster GPUs and memory access. CNNs are really powerful as they learn the features from data in layers such that they exhibit the structure of the V-1 features of the human brain. A huge bottleneck, in this case, is that CNNs are very large and have a very high memory footprint, and hence they cannot be employed on devices with limited storage such as mobile phone, IoT etc. In this work, we study the model complexity versus accuracy trade-off on MNSIT dataset, and give a concrete framework for handling such a problem, given the worst case accuracy that a system can tolerate. In our work, we reduce the model complexity by 236 times, and memory footprint by 19.5 times compared to the base model while achieving worst case accuracy threshold

    Mixing layer instability and vorticity amplification in a creeping viscoelastic flow

    Get PDF
    We report quantitative evidence of mixing-layer elastic instability in a viscoelastic fluid flow between two widely spaced obstacles hindering a channel flow at Re≪1Re\ll1 and Wi≫1Wi\gg1. Two mixing layers with nonuniform shear velocity profiles are formed in the region between the obstacles. The mixing-layer instability arises in the vicinity of an inflection point on the shear velocity profile with a steep variation in the elastic stress. The instability results in an intermittent appearance of small vortices in the mixing layers and an amplification of spatio-temporal averaged vorticity in the elastic turbulence regime. The latter is characterized through scaling of friction factor with WiWi, and both pressure and velocity spectra. Furthermore, the observations reported provide improved understanding of the stability of the mixing layer in a viscoelastic fluid at large elasticity, i.e. Wi≫1Wi\gg1 and Re≪1Re\ll1, and oppose the current view of suppression of vorticity solely by polymer additives.Comment: 6 pages, 7 figure
    • …
    corecore