445 research outputs found
Asymptotic Behavior of the Correlator for Polyakov Loops
The asymptotic behavior of the correlator for Polyakov loop operators
separated by a large distance is determined for high temperature QCD. It is
dominated by nonperturbative effects related to the exchange of magnetostatic
gluons. To analyze the asymptotic behavior, the problem is formulated in terms
of the effective field theory of QCD in 3 space dimensions. The Polyakov loop
operator is expanded in terms of local gauge-invariant operators constructed
out of the magnetostatic gauge field, with coefficients that can be calculated
using resummed perturbation theory. The asymptotic behavior of the correlator
is , where is the mass of the lowest-lying glueball in
-dimensional QCD. This result implies that existing lattice calculations
of the Polyakov loop correlator at the highest temperatures available do not
probe the true asymptotic region in .Comment: 10 pages, NUHEP-TH-94-2
Temporal Structures in Electron Spectra and Charge Sign Effects in Galactic Cosmic Rays
We present the precision measurements of 11 years of daily cosmic electron fluxes in the rigidity interval from 1.00 to 41.9 GV based on 2.0 Ă108 electrons collected with the Alpha Magnetic Spectrometer (AMS) aboard the International Space Station. The electron fluxes exhibit variations on multiple timescales. Recurrent electron flux variations with periods of 27 days, 13.5 days, and 9 days are observed. We find that the electron fluxes show distinctly different time variations from the proton fluxes. Remarkably, a hysteresis between the electron flux and the proton flux is observed with a significance of greater than 6 Ï at rigidities below 8.5 GV. Furthermore, significant structures in the electron-proton hysteresis are observed corresponding to sharp structures in both fluxes. This continuous daily electron data provide unique input to the understanding of the charge sign dependence of cosmic rays over an 11-year solar cycle
The transcriptional landscape of endogenous retroelements delineates esophageal adenocarcinoma subtypes
Most cancer types exhibit aberrant transcriptional activity, including derepression of retrotransposable elements (RTEs). However, the degree, specificity and potential consequences of RTE transcriptional activation may differ substantially among cancer types and subtypes. Representing one extreme of the spectrum, we characterize the transcriptional activity of RTEs in cohorts of esophageal adenocarcinoma (EAC) and its precursor Barrett's esophagus (BE) from the OCCAMS (Oesophageal Cancer Clinical and Molecular Stratification) consortium, and from TCGA (The Cancer Genome Atlas). We found exceptionally high RTE inclusion in the EAC transcriptome, driven primarily by transcription of genes incorporating intronic or adjacent RTEs, rather than by autonomous RTE transcription. Nevertheless, numerous chimeric transcripts straddling RTEs and genes, and transcripts from stand-alone RTEs, particularly KLF5- and SOX9-controlled HERVH proviruses, were overexpressed specifically in EAC. Notably, incomplete mRNA splicing and EAC-characteristic intronic RTE inclusion was mirrored by relative loss of the respective fully-spliced, functional mRNA isoforms, consistent with compromised cellular fitness. Defective RNA splicing was linked with strong transcriptional activation of a HERVH provirus on Chr Xp22.32 and defined EAC subtypes with distinct molecular features and prognosis. Our study defines distinguishable RTE transcriptional profiles of EAC, reflecting distinct underlying processes and prognosis, thus providing a framework for targeted studies
Multiple spin-orbit excitons and the electronic structure of 뱉RuCl3
The honeycomb compound α-RuCl_{3} is widely discussed as a proximate Kitaev spin-liquid material. This scenario builds on spin-orbit entangled j = 1/2 moments arising for a t_{2g}^{5} electron configuration with strong spin-orbit coupling λ and a large cubic crystal field. The actual low-energy electronic structure of α-RuCl_{3}, however, is still puzzling. In particular, infrared absorption features at 0.30, 0.53, and 0.75 eV seem to be at odds with a j = 1/2 scenario. Also the energy of the spin-orbit exciton, the excitation from j = 1/2 to 3/2, and thus the value of λ, are controversial. Combining infrared and Raman data, we show that the infrared features can be attributed to single, double, and triple spin-orbit excitons. We find λ = 0.16 eV and Π= 42(4) meV for the observed noncubic crystal-field splitting, supporting the validity of the j = 1/2 picture for α-RuCl_{3}. The unusual strength of the double excitation is related to the underlying hopping interactions, which form the basis for dominant Kitaev exchange
Relation between the Polyakov loop and the chiral order parameter at strong coupling
We discuss the relation between the Polyakov loop and the chiral order
parameter at finite temperature by using the Gocksch-Ogilvie model with
fundamental or adjoint quarks. The model is based on the double expansion of
strong coupling and large dimensionality on the lattice. In an analytic way
with the mean field approximation employed, we show that the confined phase
must be accompanied by the spontaneous breaking of the chiral symmetry for both
fundamental and adjoint quarks. Then we proceed to numerical analysis to look
into the coupled dynamics of the Polyakov loop and the chiral order parameter.
In the case of fundamental quarks, the pseudo-critical temperature inferred
from the Polyakov loop behavior turns out to coincide with the pseudo-critical
temperature of the chiral phase transition. We discuss the physical implication
of the coincidence of the pseudo-critical temperatures in two extreme cases;
one is the deconfinement dominance and the other is the chiral dominance. As
for adjoint quarks, the deconfinement transition of first order persists and
the chiral phase transition occurs distinctly at higher temperature than the
deconfinement transition does. The present model study gives us a plausible
picture to understand the results from the lattice QCD and aQCD simulations.Comment: 19 pages, 9 figures, to appear in Phys.Rev.D. Appendix A is modified;
references are adde
Heavy Quark Free Energies and Screening in SU(2) Gauge Theory
We investigate the singlet, triplet and colour average heavy quark free
energies in SU(2) pure gauge theory at various temperatures T. We focus on the
long distance behaviour of the free energies, studying in particular the
temperature dependence of the string tension and the screening masses. The
results are qualitatively similar to the SU(3) scenario, except near the
critical temperature Tc of the deconfining transition. Finally we test a
recently proposed method to renormalize the Polyakov loop.Comment: 5 pages, 4 figures, contribution to the Proceedings of SEWM 2002
(Heidelberg
Quarkonium Suppression
I discuss quarkonium suppression in equilibriated strongly interacting
matter. After a brief review of basic features of quarkonium production I
discuss the application of recent lattice data on the heavy quark potential to
the problem of quarkonium dissociation as well as the problem of direct lattice
determination of quarkonium properties in finite temperature lattice QCD.Comment: Invited plenary talk presented on 4th International Conference on
Physics and Astrophysics of Quark Gluon Plasma (ICPAQGP-2001), November
26-30, 2001, Jaipur; 12 pp, LaTeX, uses pramana.st
Linking the chiral and deconfinement phase transitions
We show that the electric glueball becomes critical at the end-point of the
deconfinement phase transition in finite temperature QCD. Based on this
observation and existing lattice data, we argue that the chiral phase
transition at a zero quark mass and the deconfinement phase transition at an
infinite quark mass are continuously connected by the glueball-sigma mixing.Comment: 4 pages, terminology corrected. To appear in Phys. Rev.
Heavy Quark Potentials in Quenched QCD at High Temperature
Heavy quark potentials are investigated at high temperatures. The temperature
range covered by the analysis extends from values just below the
deconfinement temperature up to about in the deconfined phase. We
simulated the pure gauge sector of QCD on lattices with temporal extents of 4,
6 and 8 with spatial volumes of . On the smallest lattice a tree level
improved action was employed while in the other two cases the standard Wilson
action was used. Below we find a temperature dependent logarithmic term
contributing to the confinement potential and observe a string tension which
decreases with rising temperature but retains a finite value at the
deconfinement transition. Above the potential is Debye-screened, however
simple perturbative predictions do not apply.Comment: 20 pages, 9 figure
- âŠ