22 research outputs found

    Impact Of Surface And Pore Characteristics On Fatigue Life Of Laser Powder Bed Fusion Ti–6Al–4V Alloy Described By Neural Network Models

    Get PDF
    In this study, the effects of surface roughness and pore characteristics on fatigue lives of laser powder bed fusion (LPBF) Ti–6Al–4V parts were investigated. The 197 fatigue bars were printed using the same laser power but with varied scanning speeds. These actions led to variations in the geometries of microscale pores, and such variations were characterized using micro-computed tomography. To generate differences in surface roughness in fatigue bars, half of the samples were grit-blasted and the other half were machined. Fatigue behaviors were analyzed with respect to surface roughness and statistics of the pores. For the grit-blasted samples, the contour laser scan in the LPBF strategy led to a pore-depletion zone isolating surface and internal pores with different features. For the machined samples, where surface pores resemble internal pores, the fatigue life was highly correlated with the average pore size and projected pore area in the plane perpendicular to the stress direction. Finally, a machine learning model using a drop-out neural network (DONN) was employed to establish a link between surface and pore features to the fatigue data (logN), and good prediction accuracy was demonstrated. Besides predicting fatigue lives, the DONN can also estimate the prediction uncertainty

    Fast Prediction Of Thermal Distortion In Metal Powder Bed Fusion Additive Manufacturing: Part 1, A Thermal Circuit Network Model

    Get PDF
    The additive manufacturing (AM) process metal powder bed fusion (PBF) can quickly produce complex parts with mechanical properties comparable to wrought materials. However, thermal stress accumulated during PBF induces part distortion, potentially yielding parts out of specification and frequently process failure. This manuscript is the first of two companion manuscripts that introduce a computationally efficient distortion and stress prediction algorithm that is designed to drastically reduce compute time when integrated in to a process design optimization routine. In this first manuscript, we introduce a thermal circuit network (TCN) model to estimate the part temperature history during PBF, a major computational bottleneck in PBF simulation. In the TCN model, we are modeling conductive heat transfer through both the part and support structure by dividing the part into thermal circuit elements (TCEs), which consists of thermal nodes represented by thermal capacitances that are connected by resistors, and then building the TCN in a layer-by-layer manner to replicate the PBF process. In comparison to conventional finite element method (FEM) thermal modeling, the TCN model predicts the temperature history of metal PBF AM parts with more than two orders of magnitude faster computational speed, while sacrificing less than 15% accuracy. The companion manuscript illustrates how the temperature history is integrated into a thermomechanical model to predict thermal stress and distortion

    Fast Prediction Of Thermal Distortion In Metal Powder Bed Fusion Additive Manufacturing: Part 2, A Quasi-static Thermo-mechanical Model

    Get PDF
    The additive manufacturing (AM) process metal powder bed fusion (PBF) can quickly produce complex parts with mechanical properties comparable to that of wrought materials. However, thermal stress accumulated during Metal PBF may induce part distortion and even cause failure of the entire process. This manuscript is the second part of two companion manuscripts that collectively present a part-scale simulation method for fast prediction of thermal distortion in Metal PBF. The first part provides a fast prediction of the temperature history in the part via a thermal circuit network (TCN) model. This second part uses the temperature history from the TCN to inform a model of thermal distortion using a quasi-static thermo-mechanical model (QTM). The QTM model distinguished two periods of Metal PBF, the thermal loading period and the stress relaxation period. In the thermal loading period, the layer-by-layer build cycles of Metal PBF are simulated, and the thermal stress accumulated in the build process is predicted. In the stress relaxation period, the removal of parts from the substrate is simulated, and the off-substrate part distortion and residual stress are predicted. Validation of part distortion predicted by the QTM model against both experiment and data in literature showed a relative error less than 20%. This QTM, together with the TCN, offers a framework for rapid, part-scale simulations of Metal PBF that can be used to optimize the build process and parameters
    corecore