9 research outputs found

    iPS細胞およびそのゲノム編集を利用した腫瘍免疫療法に関する研究

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学教授 徳永 勝士, 東京大学准教授 滝田 順子, 東京大学准教授 平池 修, 東京大学准教授 福原 浩, 東京大学講師 長野 宏一朗University of Tokyo(東京大学

    Mini-TCRs: Truncated T cell receptors to generate T cells from induced pluripotent stem cells

    Get PDF
    Allogeneic T cell platforms utilizing induced pluripotent stem cell (iPSC) technology exhibit significant promise for the facilitation of adoptive immunotherapies. While mature T cell receptor (TCR) signaling plays a crucial role in generating T cells from iPSCs, the introduction of exogenous mature TCR genes carries a potential risk of causing graft-versus-host disease (GvHD). In this study, we present the development of truncated TCRα and TCRβ chains, termed mini-TCRs, which lack variable domains responsible for recognizing human leukocyte antigen (HLA)-peptide complexes. We successfully induced cytotoxic T lymphocytes (CTLs) from iPSCs by employing mini-TCRs. Combinations of TCRα and TCRβ fragments were screened from mini-TCR libraries based on the surface localization of CD3 proteins and their ability to transduce T cell signaling. Consequently, mini-TCR-expressing iPSCs underwent physiological T cell development, progressing from the CD4 and CD8 double-positive stage to the CD8 single-positive stage. The resulting iPSC-derived CTLs exhibited comparable cytokine production and cytotoxicity in comparison to that of full-length TCR-expressing T lymphocytes when chimeric antigen receptors (CARs) were expressed. These findings demonstrate the potential of mini-TCR-carrying iPSCs as a versatile platform for CAR T cell therapy, offering a promising avenue for advancing adoptive immunotherapies

    Optimization of the proliferation and persistency of CAR T cells derived from human induced pluripotent stem cells

    Get PDF
    CARシグナルを補完する遺伝子改変により *iCAR-T細胞の固形がん治療効果が改善される. 京都大学プレスリリース. 2022-12-13.Genetic modifications boosting CAR signaling improve the therapeutic efficacy of iPSC-derived CAR-T cells against solid tumors. 京都大学プレスリリース. 2022-12-13.The effectiveness of chimaeric antigen receptor (CAR) T-cell immunotherapies against solid tumours relies on the accumulation, proliferation and persistency of T cells at the tumour site. Here we show that the proliferation of CD8αβ cytotoxic CAR T cells in solid tumours can be enhanced by deriving and expanding them from a single human induced-pluripotent-stem-cell clone bearing a CAR selected for efficient differentiation. We also show that the proliferation and persistency of the effector cells in the tumours can be further enhanced by genetically knocking out diacylglycerol kinase, which inhibits antigen-receptor signalling, and by transducing the cells with genes encoding for membrane-bound interleukin-15 (IL-15) and its receptor subunit IL-15Rα. In multiple tumour-bearing animal models, the engineered hiPSC-derived CAR T cells led to therapeutic outcomes similar to those of primary CD8 T cells bearing the same CAR. The optimization of effector CAR T cells derived from pluripotent stem cells may aid the development of long-lasting antigen-specific T-cell immunotherapies for the treatment of solid tumours

    A clinically applicable and scalable method to regenerate T-cells from iPSCs for off-the-shelf T-cell immunotherapy

    Get PDF
    動物由来の成分を含まないより安全な製法でiPS細胞から大量の再生T細胞を培養する方法の開発 --T細胞を使ったがん免疫療法での利用も--. 京都大学プレスリリース. 2021-01-18.Clinical successes demonstrated by chimeric antigen receptor T-cell immunotherapy have facilitated further development of T-cell immunotherapy against wide variety of diseases. One approach is the development of “off-the-shelf” T-cell sources. Technologies to generate T-cells from pluripotent stem cells (PSCs) may offer platforms to produce “off-the-shelf” and synthetic allogeneic T-cells. However, low differentiation efficiency and poor scalability of current methods may compromise their utilities. Here we show improved differentiation efficiency of T-cells from induced PSCs (iPSCs) derived from an antigen-specific cytotoxic T-cell clone, or from T-cell receptor (TCR)-transduced iPSCs, as starting materials. We additionally describe feeder-free differentiation culture systems that span from iPSC maintenance to T-cell proliferation phases, enabling large-scale regenerated T-cell production. Moreover, simultaneous addition of SDF1α and a p38 inhibitor during T-cell differentiation enhances T-cell commitment. The regenerated T-cells show TCR-dependent functions in vitro and are capable of in vivo anti-tumor activity. This system provides a platform to generate a large number of regenerated T-cells for clinical application and investigate human T-cell differentiation and biology

    Rise of iPSCs as a cell source for adoptive immunotherapy.

    Get PDF
    Adoptive T cell transfer is a potentially effective strategy for treating cancer and viral infections. However, previous studies of cancer immunotherapy have shown that T cells expanded in vitro fall into an exhausted state and, consequently, have limited therapeutic effect. One way to overcome this obstacle is to use induced pluripotent stem cells (iPSCs) as a cell source for making effector T cells. In recent years, there have been several reports on generating effector T cells suitable for adoptive immunotherapy. The reported findings suggest that using iPSC technology, it may be possible to stably derive large numbers of juvenile memory T cells targeted to cancers or viruses. In this review, we describe a strategy for applying iPSC technology to immunotherapy and the characteristics of T cells derived from iPSCs. We also discuss how these technologies can be applied clinically in the future

    The therapeutic potential of multiclonal tumoricidal T cells derived from tumor infiltrating lymphocyte-1derived iPS cells

    Get PDF
    Ito et al. generated and characterized multiclonal tumoricidal T cells derived from tumor infiltrating lymphocyte-derived iPS cells (TIL-iPSC) using human colorectal cancer specimens. They demonstrated that the newly-generated T cells retained intrinsic characters and acquired improved functions with less differentiated profiles, thus constituting a potential therapeutic anti-cancer tool
    corecore