7 research outputs found
Anthocyanin-rich tea Sunrouge upregulates expressions of heat shock proteins in the gastrointestinal tract of ICR mice: A comparison with the conventional tea cultivar Yabukita
Sunrouge is an anthocyanin-rich, new tea cultivar that contains similar levels of catechins as Yabukita, the most popular tea cultivar consumed in Japan. Interestingly, Sunrouge preparations have previously been shown to have more pronounced acetylcholinesterase inhibitory and anticolitis activities than those of Yabukita. In this study, we examined their effects on expressions of self-defensive molecules, including heat shock proteins (HSPs), which are molecular chaperones involved in homeostasis and longevity. Hot water extract from freeze-dried Sunrouge significantly upregulated messenger RNA (mRNA) expressions of HSP40, HSP70, and HSP32 (heme oxygenase-1), with grades greater than those shown by Yabukita. Oral administration of freeze-dried preparation of Sunrouge to male ICR mice at a dose of 1% in the basal diet for 1 month resulted in marked upregulations of several HSP mRNA expressions in mucosa from the gastrointestinal tract, especially the upper small intestine. Again, its efficacy was remarkably higher than that of Yabukita. Moreover, exposure of Caenorhabditis elegans to Sunrouge conferred thermoresistant phenotype, and also resulted in a significant life-span elongation. Taken together, our results suggest that Sunrouge is a unique and promising tea cultivar for regulating self-defense systems
Metabolomics-driven nutraceutical evaluation of diverse green tea cultivars.
BACKGROUND: Green tea has various health promotion effects. Although there are numerous tea cultivars, little is known about the differences in their nutraceutical properties. Metabolic profiling techniques can provide information on the relationship between the metabolome and factors such as phenotype or quality. Here, we performed metabolomic analyses to explore the relationship between the metabolome and health-promoting attributes (bioactivity) of diverse Japanese green tea cultivars. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the ability of leaf extracts from 43 Japanese green tea cultivars to inhibit thrombin-induced phosphorylation of myosin regulatory light chain (MRLC) in human umbilical vein endothelial cells (HUVECs). This thrombin-induced phosphorylation is a potential hallmark of vascular endothelial dysfunction. Among the tested cultivars, Cha Chuukanbohon Nou-6 (Nou-6) and Sunrouge (SR) strongly inhibited MRLC phosphorylation. To evaluate the bioactivity of green tea cultivars using a metabolomics approach, the metabolite profiles of all tea extracts were determined by high-performance liquid chromatography-mass spectrometry (LC-MS). Multivariate statistical analyses, principal component analysis (PCA) and orthogonal partial least-squares-discriminant analysis (OPLS-DA), revealed differences among green tea cultivars with respect to their ability to inhibit MRLC phosphorylation. In the SR cultivar, polyphenols were associated with its unique metabolic profile and its bioactivity. In addition, using partial least-squares (PLS) regression analysis, we succeeded in constructing a reliable bioactivity-prediction model to predict the inhibitory effect of tea cultivars based on their metabolome. This model was based on certain identified metabolites that were associated with bioactivity. When added to an extract from the non-bioactive cultivar Yabukita, several metabolites enriched in SR were able to transform the extract into a bioactive extract. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that metabolic profiling is a useful approach for nutraceutical evaluation of the health promotion effects of diverse tea cultivars. This may propose a novel strategy for functional food design
High-dose green tea polyphenols induce nephrotoxicity in dextran sulfate sodium-induced colitis mice by down-regulation of antioxidant enzymes and heat-shock protein expressions
Previously, we reported that oral feeding of 1% green tea polyphenols (GTPs) aggravated the dextran sulfate sodium (DSS)-induced colitis in mice. In the present study, we assessed the toxicity of 1% GTPs in several organs from normal and DSS-exposed mice. Sixty-two male ICR mice were initially divided into four groups. Non-treated group (group 1, n = 15) was given standard diet and water, GTPs (group 2, n = 15) received 1% GTPs in diet and water, DSS (group 3, n = 15) received diet and 5% DSS in water, and GTPs + DSS group (group 4, n = 17) received 1% GTPs in diet and 5% DSS in water. We found that group 4 significantly increased (P < 0.05) kidney weight, the levels of serum creatinine and thiobarbituric acid-reactive substances in both kidney and liver, as compared with those in group 3. The mRNA expression levels of antioxidant enzymes and heat-shock proteins (HSPs) in group 4 were lower than those of group 3. For instance, heme oxygenase-1 (HO-1), HSP27, and 90 mRNA in the kidney of group 4 were dramatically down-regulated as compared with those of group 3. Furthermore, 1% GTPs diet decreased the expression of HO-1, NAD(P)H:quinone oxidoreductase 1 (NQO1) and HSP90 in kidney and liver of non-treated mice. Taken together, our results indicate that high-dose GTPs diet disrupts kidney functions through the reduction of antioxidant enzymes and heat-shock protein expressions in not only colitis but also non-treated ICR mice