230 research outputs found

    Localization of dynamin 2 in rat seminiferous tubules during the spermatogenic cycle.

    Get PDF
    Dynamin is a protein essential to endocytosis. Dynamin 2, a dynamin isoform, is expressed most intensely in testicular tissue; however, precise localization has never been studied. Therefore, we investigated the expression of dynamin 2 in rat testicular tissue using immunohistochemical methods, and discuss here the physiological function of this protein. Testicular tissues were obtained from Wistar rats at 10, 21 and 63 days of age. Immunohistochemistrical examination and Western blot analysis were conducted using dynamin 2 specific antibody. Western blot analysis showed that expression in 21- and 63-day-old rats was more intense than that in 10-day-old rats. Dynamin 2 expression was observed using immunohistochemical method in the seminiferous tubules of all rats. In the 63-day-old rats, the expression was intense, especially in spermatids in the earlier maturation stages and in spermatocytes, and was observed in Sertoli cells. However, in spermatids, the expression gradually declined as spermatids matured to spermatozoa. In the 21-day-old rats, the expression was evident in spermatocytes and Sertoli cells, but that in the 10-day-old rats was weak. Intense expression of dynamin 2 during spermatogenesis suggests that this protein plays an important role in this process.</p

    Genetic population structure of the precious coral Corallium japonicum in the Northwest Pacific

    Get PDF
    Population sizes of the Japanese red coral Corallium japonicum have been severely affected by poaching and overfishing. Although genetic structure and connectivity patterns are considered important parameters for conservation strategies, there are few studies focusing on the population genetics of C. japonicum in the Northwest Pacific. We examined the genetic population structure of C. japonicum, in the Northwest Pacific. We used restriction-site-associated DNA sequencing (RAD-seq), which can be used to identify genome-wide single-nucleotide polymorphism (SNPs), to reveal detailed within-species genetic variations. Using the variable SNP loci identified from this analysis, we successfully evaluated the population-level genetic diversity and patterns of gene flow among multiple populations of C. japonicum around Japan. The results of genetic analysis basically showed that gene flow is widely maintained in the geographic range examined in this study, but the analysis in combination with larval dispersal simulations revealed several populations that were genetically distinct from the other populations, suggesting geographically limited gene flows. The information obtained from this study will be useful for the design of effective management schemes for C. japonicum, which is under threat from overfishing

    Laparoscopic radical prostatectomy: initial cases at Okayama University Hospital.

    Get PDF
    We performed laparoscopic prostatectomy in seven cases with organ-confined prostate cancer. In 6 cases, the surgery was completed successfully and the mean operative time was 424 min. Volume of blood loss was 200 to 3,200 ml and catheterization lasted 6 to 37 days. No major complications were observed in 6 of the cases. In one case, open surgical conversion was necessary mainly due to a bladder injury. Although these were the first cases of laparoscopic prostatectomy in our institution, the technical difficulty and complexity of the surgery were moderate. We believe that laparoscopic radical prostatectomy will become a standard option for the treatment of organ-confined prostate cancer.</p

    A simplified method to quantitatively predict the effect of lenvatinib on hepatocellular carcinoma using contrast-enhanced ultrasound with perfluorobutane microbubbles

    Get PDF
    Contrast-enhanced computed tomography (CECT) is generally used to evaluate the response to treatment of hepatocellular carcinoma (HCC); however, CECT is unsuitable for the early prediction of therapeutic effects and frequent monitoring. We aimed to investigate the usefulness of our simplified method for the quantification of tumor vascularity using contrast-enhanced ultrasound (CEUS) with perfluorobutane microbubbles [Sonazoid® (GE Healthcare, Oslo, Norway)] to predict the therapeutic effect of lenvatinib. Among the 13 patients studied, nine who had more than a 20% reduction in tumor vascularity within 2 weeks of starting treatment experienced complete response or partial response at 8-12 weeks as assessed by CECT. In contrast, three patients without reductions and one patient with only a slight decrease in tumor vascularity had a poor response to lenvatinib. Quantitative assessment of tumor vascularity by our simplified CEUS-based method could be a useful predictor of therapeutic responses to lenvatinib in patients with HCC

    An untypeable enterotoxigenic Escherichia coli represents one of the dominant types causing human disease.

    Get PDF
    Enterotoxigenic Escherichia coli (ETEC) is a major cause of diarrhoea in children below 5 years of age in endemic areas, and is a primary cause of diarrhoea in travellers visiting developing countries. Epidemiological analysis of E. coli pathovars is traditionally carried out based on the results of serotyping. However, genomic analysis of a global ETEC collection of 362 isolates taken from patients revealed nine novel O-antigen biosynthesis gene clusters that were previously unrecognized, and have collectively been called unclassified. When put in the context of all isolates sequenced, one of the novel O-genotypes, OgN5, was found to be the second most common ETEC O-genotype causing disease, after O6, in a globally representative ETEC collection. It's also clear that ETEC OgN5 isolates have spread globally. These novel O-genotypes have now been included in our comprehensive O-genotyping scheme, and can be detected using a PCR-based and an in silico typing method. This will assist in epidemiological studies, as well as in ETEC vaccine development

    Methanol bioeconomy: promotion of rice crop yield in paddy fields with microbial cells prepared from natural gas‐derived C 1 compound

    Get PDF
    微生物やその細胞壁成分の葉面散布による酒米の増収に成功 --メタノールを原料に生産した微生物製剤を出穂後1度の散布で--. 京都大学プレスリリース. 2020-12-11.Methylotrophs, which can utilize methanol as a sole carbon source, are promising microorganisms to be exploited in a methanol‐based bioeconomy, in which a variety of useful compounds are biotechnologically produced from natural gas‐derived methanol. Pink‐pigmented facultative methylotrophs (PPFMs) are common plant phyllospheric bacteria and are known to enhance seedling growth and total biomass of various plants. However, improvement of crop yield by inoculation of PPFMs at the field level has not been well investigated. We herein describe improvement of crop yield of several rice cultivars by foliar spraying of PPFMs. After selection of PPFM strains and rice cultivars by the in vitro seedling growth test, we further conducted paddy field experiments. The crop yield of the sake‐brewing rice Oryza sativa cultivar Hakutsurunishiki was reproducibly improved in a commercial paddy field for over a 5‐year period. A one‐time foliar spray of PPFM cells (living or killed) or a cell wall polysaccharide fraction, after the heading date, acted in the phyllosphere and effectively improved crop yield. Our results show that the established process with PPFMs is feasible for improvement of food production in the methanol bioeconomy

    Genomic dissection of the Vibrio cholerae O-serogroup global reference strains: reassessing our view of diversity and plasticity between two chromosomes

    Get PDF
    Approximately 200 O-serogroups of Vibrio cholerae have already been identified; however, only 2 serogroups, O1 and O139, are strongly related to pandemic cholera. The study of non-O1 and non-O139 strains has hitherto been limited. Nevertheless, there are other clinically and epidemiologically important serogroups causing outbreaks with cholera-like disease. Here, we report a comprehensive genome analysis of the whole set of V. cholerae O-serogroup reference strains to provide an overview of this important bacterial pathogen. It revealed structural diversity of the O-antigen biosynthesis gene clusters located at specific loci on chromosome 1 and 16 pairs of strains with almost identical O-antigen biosynthetic gene clusters but differing in serological patterns. This might be due to the presence of O-antigen biosynthesis-related genes at secondary loci on chromosome 2

    DNA methyltransferase 3B plays a protective role against hepatocarcinogenesis caused by chronic inflammation via maintaining mitochondrial homeostasis

    Get PDF
    Most hepatocellular carcinomas (HCCs) develop on the basis of chronic hepatitis, but the mechanism of epigenetic regulation in inflammatory hepatocarcinogenesis has yet to be elucidated. Among de novo DNA methyltransferases (DNMTs), DNMT3B has lately been reported to act specifically on actively transcribed genes, suggesting the possibility that it plays a role in the pathogenesis of cancer. We confirmed that DNMT3B isoforms lacking its catalytic domain were highly expressed in HCCs compared with non-tumorous liver tissue. To elucidate the role of DNMT3B in hepatocarcinogenesis, we generated a genetically engineered mouse model with hepatocyte-specific Dnmt3b deletion. The liver of the Dnmt3b-deficient mice exhibited an exacerbation of thioacetamide-induced hepatitis, progression of liver fibrosis and a higher incidence of HCC compared with the liver of the control mice. Whole-genome bisulfite sequencing verified a lower CG methylation level in the Dnmt3b-deficient liver, demonstrating differentially methylated regions throughout the genome. Transcriptome analysis revealed decreased expression of genes related to oxidative phosphorylation in the Dnmt3b-deficient liver. Moreover, primary hepatocytes isolated from the Dnmt3b-deficient mice showed reduced mitochondrial respiratory capacity, leading to the enhancement of oxidative stress in the liver tissue. Our findings suggest the protective role of DNMT3B against chronic inflammation and HCC development via maintaining mitochondrial homeostasis

    Evolutional transition of HBV genome during the persistent infection determined by single-molecule real-time sequencing

    Get PDF
    BACKGROUND: Although HBV infection is a serious health issue worldwide, the landscape of HBV genome dynamics in the host has not yet been clarified. This study aimed to determine the continuous genome sequence of each HBV clone using a single-molecule real-time sequencing platform, and clarify the dynamics of structural abnormalities during persistent HBV infection without antiviral therapy. PATIENTS AND METHODS: Twenty-five serum specimens were collected from 10 untreated HBV-infected patients. Continuous whole-genome sequencing of each clone was performed using a PacBio Sequel sequencer; the relationship between genomic variations and clinical information was analyzed. The diversity and phylogeny of the viral clones with structural variations were also analyzed. RESULTS: The whole-genome sequences of 797, 352 HBV clones were determined. The deletion was the most common structural abnormality and concentrated in the preS/S and C regions. Hepatitis B e antibody (anti-HBe)-negative samples or samples with high alanine aminotransferase levels have significantly diverse deletions than anti-HBe-positive samples or samples with low alanine aminotransferase levels. Phylogenetic analysis demonstrated that various defective and full-length clones evolve independently and form diverse viral populations. CONCLUSIONS: Single-molecule real-time long-read sequencing revealed the dynamics of genomic quasispecies during the natural course of chronic HBV infections. Defective viral clones are prone to emerge under the condition of active hepatitis, and several types of defective variants can evolve independently of the viral clones with the full-length genome
    corecore