28 research outputs found

    Effects of Hot Isostatic Pressing on the Properties of Laser-Powder Bed Fusion Fabricated Water Atomized 25Cr7Ni Stainless Steel

    Get PDF
    25Cr7Ni stainless steel (super duplex stainless steels) exhibits a duplex microstructure of ferrite and austenite, resulting in an excellent combination of high strength and corrosion resistance. However, Laser-Powder Bed Fusion fabrication of a water-atomized 25Cr7Ni stainless steel of novel chemical composition resulted in a purely ferritic microstructure and over 5% porosity. The current study investigated the effects of two hot isostatic pressing parameters on the physical, mechanical, and corrosion properties as well as microstructures of water-atomized 25Cr7Ni stainless steel of novel composition fabricated by L-PBF for the first time in the literature. The corrosion behaviour was studied using linear sweep voltammetry in a 3.5% NaCl solution. The Hot Isostatic Pressing-treated sample achieved over 98% densification with a corresponding reduction in porosity to less than 0.1% and about 3 similar to 4% in annihilation of dislocation density. A duplex microstructure of ferrite 60% and austenite 40%was observed in the X-Ray Diffraction and etched metallography of the HIP-treated samples from a purely ferritic microstructure prior to the HIP treatment. With the evolution of austenite phase, the HIP-treated samples recorded a decrease in Ultimate Tensile Strength, yield strength, and hardness in comparison with as-printed samples. The variation in the morphology of the evolved austenite grains in the HIP-treated samples was observed to have a significant effect on the elongation. With a reduction in porosity and the evolution of the austenite phase, the HIP-treated samples showed a higher corrosion resistance in comparison with the as-printed samples

    Modelling of Failure Behaviour of 3D-Printed Composite Parts

    No full text
    Failure in 3D-printed composite parts is complex due to anisotropic properties, which are mainly governed by printing parameters, printing strategy, and materials. Understanding the failure behaviour of materials is crucial for the design calculations of parts. Effective computational methodologies are yet not available for accurately capturing the failure behaviour of 3D-printed parts. Therefore, we proposed two different computational methodologies for modelling the failure behaviour of 3D-printed parts. 3D-printed parts subjected to uniaxial tensile loading were considered for modelling. In the first method, the computational model employed nonlinear properties of virgin material, and the model predicted higher values than the experimental results. This method provided idealistic nonlinear behaviour of 3D-printed parts. The difference in the results of experimental and computational is significant, especially in the case of 3D-printed composites. In the second method, the computational model utilized nonlinear material data from mechanical testing results and the model predicted accurate nonlinear behaviour of 3D-printed parts. This method provided realistic material behaviour of 3D-printed parts. Therefore, for effective design and analysis, it is suggested to use the latter computational methodology to capture the failure behaviour of 3D-printed parts accurately

    Estimating Powder-Polymer Material Properties Used in Design for Metal Fused Filament Fabrication (DfMF(3))

    No full text
    Metal fused filament fabrication (MF3) combines fused filament fabrication and sintering processes to fabricate complex metal components. In MF3, powder-polymer mixtures are printed to produce green parts that are subsequently debound and sintered. In the design for MF3 (DfMF(3)), it is important to understand how material properties of the filament affect processability, part quality, and ensuing properties. However, the materials property database of powder-polymer materials to perform DfMF(3) simulations is very limited, and experimental measurements can be expensive and time-consuming. This work investigates models that can predict the powder-polymer material properties that are required as input parameters for simulating the MF3 using the Digimat-AM process design platform for fused filament fabrication. Ti-6Al-4V alloy (56-60 vol.%) and a multicomponent polymer binder were used to predict properties such as density, specific heat, thermal conductivity, Young's modulus, and viscosity. The estimated material properties were used to conduct DfMF(3) simulations to understand material-processing-geometry interactions

    Printability studies of Ti-6Al-4V by metal fused filament fabrication (MF3)

    No full text
    Predicting the influence of material composition on the printability of highly filled metal powder-polymer systems present a significant challenge in metal fused filament fabrication (MF3). The current work presents an approach to evaluate new material compositions used to fabricate filaments for their printability. In this study, filaments with 59 vol.% (87 wt.%) of Ti-6Al-4V powder with two particle size distributions {fine (D-50 = 13 mu m) and coarse (D-50 = 30 mu m)} dispersed in a polymer matrix were examined. The respective forces to overcome the pressure drop, for successful printing, were found to increase with an increase in the feed rate, and were also dependent on the feedstock viscosity. In addition, shear forces estimated from the filament shear strength were found to be limiting conditions for successful printing. Based on these observations, a criterion has been proposed to evaluate filament printability from the predicted limiting force for filament failure and the required force to achieve continuous material flow for successful printing. Under present experimental conditions, successful printing was achieved up to 2 mm/s and 8 mm/s for fine and coarse powder filaments, in good agreement with the model predictions. The model was experimentally tested and found to be applicable for other compositions. The results demonstrate a new printability criterion to design novel materials for MF3

    Effects of Hot Isostatic Pressing on the Properties of Laser-Powder Bed Fusion Fabricated Water Atomized 25Cr7Ni Stainless Steel

    No full text
    25Cr7Ni stainless steel (super duplex stainless steels) exhibits a duplex microstructure of ferrite and austenite, resulting in an excellent combination of high strength and corrosion resistance. However, Laser-Powder Bed Fusion fabrication of a water-atomized 25Cr7Ni stainless steel of novel chemical composition resulted in a purely ferritic microstructure and over 5% porosity. The current study investigated the effects of two hot isostatic pressing parameters on the physical, mechanical, and corrosion properties as well as microstructures of water-atomized 25Cr7Ni stainless steel of novel composition fabricated by L-PBF for the first time in the literature. The corrosion behaviour was studied using linear sweep voltammetry in a 3.5% NaCl solution. The Hot Isostatic Pressing-treated sample achieved over 98% densification with a corresponding reduction in porosity to less than 0.1% and about 3~4% in annihilation of dislocation density. A duplex microstructure of ferrite 60% and austenite 40%was observed in the X-Ray Diffraction and etched metallography of the HIP-treated samples from a purely ferritic microstructure prior to the HIP treatment. With the evolution of austenite phase, the HIP-treated samples recorded a decrease in Ultimate Tensile Strength, yield strength, and hardness in comparison with as-printed samples. The variation in the morphology of the evolved austenite grains in the HIP-treated samples was observed to have a significant effect on the elongation. With a reduction in porosity and the evolution of the austenite phase, the HIP-treated samples showed a higher corrosion resistance in comparison with the as-printed samples
    corecore