7,300 research outputs found

    ATLAS silicon module assembly and qualification tests at IFIC Valencia

    Full text link
    ATLAS experiment, designed to probe the interactions of particles emerging out of proton proton collisions at energies of up to 14 TeV, will assume operation at the Large Hadron Collider (LHC) at CERN in 2007. This paper discusses the assembly and the quality control tests of forward detector modules for the ATLAS silicon microstrip detector assembled at the Instituto de Fisica Corpuscular (IFIC) in Valencia. The construction and testing procedures are outlined and the laboratory equipment is briefly described. Emphasis is given on the module quality achieved in terms of mechanical and electrical stability.Comment: 23 pages, 38 EPS figures, uses JINST LaTeX clas

    LHC Coverage of RPV MSSM with Light Stops

    Full text link
    We examine the sensitivity of recent LHC searches to signatures of supersymmetry with R-parity violation (RPV). Motivated by naturalness of the Higgs potential, which would favor light third-generation squarks, and the stringent LHC bounds on spectra in which the gluino or first and second generation squarks are light, we focus on scenarios dominated by the pair production of light stops. We consider the various possible direct and cascade decays of the stop that involve the trilinear RPV operators. We find that in many cases, the existing searches exclude stops in the natural mass range and beyond. However, typically there is little or no sensitivity to cases dominated by UDD operators or LQD operators involving taus. We propose several ideas for searches which could address the existing gaps in experimental coverage of these signals.Comment: 41 pages, 12 figures; v2: included new searches (see footnote 10), minor corrections and improvement

    Measurement of the rapidity-even dipolar flow in Pb-Pb collisions with the ATLAS detector

    Full text link
    The rapidity-even dipolar flow v1 associated with dipole asymmetry in the initial geometry is measured over a broad range in transverse momentum 0.5 GeV<pT<9 GeV, and centrality (0-50)% in Pb-Pb collisions at sqrt(s_NN)=2.76 TeV, recorded by the ATLAS experiment at the LHC. The v1 coefficient is determined via a two-component fit of the first order Fourier coefficient, v_{1,1}= cos \Delta\phi, of two-particle correlations in azimuthal angle \Delta\phi=\phi_a-\phi_b as a function of pT^a and pT^b. This fit is motivated by the finding that the pT dependence of v_{1,1}(pT^a,pT^b) data are consistent with the combined contributions from a rapidity-even v1 and global momentum conservation. The magnitude of the extracted momentum conservation component suggests that the system conserving momentum involves only a subset of the event (spanning about 3 units in \eta in central collisions). The extracted v1 is observed to cross zero at pT~1.0 GeV, reaches a maximum at 4-5 GeV with a value comparable to that for v3, and decreases at higher pT. Interestingly, the magnitude of v1 at high pT exceeds the value of the v3 in all centrality interval and exceeds the value of v2 in central collisions. This behavior suggests that the path-length dependence of energy loss and initial dipole asymmetry from fluctuations corroborate to produce a large dipolar anisotropy for high pT hadrons, making the v1 a valuable probe for studying the jet quenching phenomena.Comment: 9 pages, 6 figures. Proceedings for the 28th Winter Workshop on Nuclear Dynamics, Dorado Del Mar, Puerto Rico, United States Of America, 7 - 14 Apr 201

    Signals from R-parity violating top quark decays at LHC

    Full text link
    We evaluate the potential of the CERN LHC collider to observe rare decays of the top quark in channels involving R-parity violating (RPV) interactions. We stress the importance of calculating top quark production and decay simultaneously as a true 2->4 process. The process of tt-bar pair production followed by RPV decay of one of the top quarks is analyzed with fast detector simulation. We show that intermediate supersymmetric particles can be observed as resonances even if they are heavier than the top quark due to the significant off-shell top-quark mass effects. The approach where the top quark is produced on-mass-shell and then decays into 2- or 3-body final state would in general lead to incorrect kinematical distributions and rates. The rates of the 2 -> 4 process with top quark production and RPV 3-body decay depend on the total width of the heavy intermediate sfermion which could,therefore, be measured indirectly. We find that the LHC collider offers a unique potential to study rare top quark decays in the framework of supersymmetry with broken R-parity for branching fractions of RPV top decays as low as 10^{-6}Comment: 23 pages, 22 figure

    Macroscopic Strings and "Quirks" at Colliders

    Full text link
    We consider extensions of the standard model containing additional heavy particles ("quirks") charged under a new unbroken non-abelian gauge group as well as the standard model. We assume that the quirk mass m is in the phenomenologically interesting range 100 GeV--TeV, and that the new gauge group gets strong at a scale Lambda < m. In this case breaking of strings is exponentially suppressed, and quirk production results in strings that are long compared to 1/Lambda. The existence of these long stable strings leads to highly exotic events at colliders. For 100 eV < Lambda < keV the strings are macroscopic, giving rise to events with two separated quirk tracks with measurable curvature toward each other due to the string interaction. For keV < Lambda < MeV the typical strings are mesoscopic: too small to resolve in the detector, but large compared to atomic scales. In this case, the bound state appears as a single particle, but its mass is the invariant mass of a quirk pair, which has an event-by-event distribution. For MeV < Lambda < m the strings are microscopic, and the quirks annihilate promptly within the detector. For colored quirks, this can lead to hadronic fireball events with 10^3 hadrons with energy of order GeV emitted in conjunction with hard decay products from the final annihilation.Comment: Added discussion of photon-jet decay, fixed minor typo

    Absorbing systematic effects to obtain a better background model in a search for new physics

    Full text link
    This paper presents a novel approach to estimate the Standard Model backgrounds based on modifying Monte Carlo predictions within their systematic uncertainties. The improved background model is obtained by altering the original predictions with successively more complex correction functions in signal-free control selections. Statistical tests indicate when sufficient compatibility with data is reached. In this way, systematic effects are absorbed into the new background model. The same correction is then applied on the Monte Carlo prediction in the signal region. Comparing this method to other background estimation techniques shows improvements with respect to statistical and systematical uncertainties. The proposed method can also be applied in other fields beyond high energy physics

    A Search for Vector Diquarks at the CERN LHC

    Get PDF
    Resonant production of the first generation vector diquarks at the CERN Large Hadron Collider (LHC) is investigated. It is shown that the LHC will be able to discover vector diquarks with masses up to 9 TeV for quark-diquark-quark coupling alpha_(D)=0.1 and 4 TeV for alpha_(D)=5x10^(-4).Comment: 9 pages, 4 tables, 4 figure

    On the active site of elastase: Partial mapping by means of specific peptide substrates

    Get PDF
    AbstractRNase-S peptide as well as some related octa- and hexapeptides were found to be highly, reactive substrates of porcine elastase (e.g. Ala4-Lys-Phe: Km = 4500 M−1, kcat = 32 sec−1, C = 1.4 × 105 M−1 sec−1). Comparison of the various peptides led to the conclusion that the active site of porcine elastase is composed of 6–7 subsites (c.f. [1]). Preliminary mapping shows that subsites S2, Sâ€Č1 and Sâ€Č2 have hydrophobic character. Occupation of subsite S4 by the substrate is important for efficient hydrolysis. Binding at this subsite was found to be stereospecific

    Dark matter searches at LHC

    Full text link
    Besides Standard Model measurements and other Beyond Standard Model studies, the ATLAS and CMS experiments at the LHC will search for Supersymmetry, one of the most attractive explanation for dark matter. The SUSY discovery potential with early data is presented here together with some first results obtained with 2010 collision data at 7 TeV. Emphasis is placed on measurements and parameter determination that can be performed to disentangle the possible SUSY models and SUSY look-alike and the interpretation of a possible positive supersymmetric signal as an explanation of dark matter.Comment: 15 pages, 14 figures, Invited plenary talk given at DISCRETE 2010: Symposium On Prospects In The Physics Of Discrete Symmetries, 6-11 Dec 2010, Rome, Ital

    An Empirical Charge Transfer Potential with Correct Dissociation Limits

    Full text link
    The empirical valence bond (EVB) method [J. Chem. Phys. 52, 1262 (1970)] has always embodied charge transfer processes. The mechanism of that behavior is examined here and recast for use as a new empirical potential energy surface for large-scale simulations. A two-state model is explored. The main features of the model are: (1) Explicit decomposition of the total system electron density is invoked; (2) The charge is defined through the density decomposition into constituent contributions; (3) The charge transfer behavior is controlled through the resonance energy matrix elements which cannot be ignored; and (4) A reference-state approach, similar in spirit to the EVB method, is used to define the resonance state energy contributions in terms of "knowable" quantities. With equal validity, the new potential energy can be expressed as a nonthermal ensemble average with a nonlinear but analytical charge dependence in the occupation number. Dissociation to neutral species for a gas-phase process is preserved. A variant of constrained search density functional theory is advocated as the preferred way to define an energy for a given charge.Comment: Submitted to J. Chem. Phys. 11/12/03. 14 pages, 8 figure
    • 

    corecore