17,627 research outputs found
Towards a geometrical interpretation of quantum information compression
Let S be the von Neumann entropy of a finite ensemble E of pure quantum
states. We show that S may be naturally viewed as a function of a set of
geometrical volumes in Hilbert space defined by the states and that S is
monotonically increasing in each of these variables. Since S is the Schumacher
compression limit of E, this monotonicity property suggests a geometrical
interpretation of the quantum redundancy involved in the compression process.
It provides clarification of previous work in which it was shown that S may be
increased while increasing the overlap of each pair of states in the ensemble.
As a byproduct, our mathematical techniques also provide a new interpretation
of the subentropy of E.Comment: 11 pages, latex2
Triplanar Model for the Gap and Penetration Depth in YBCO
YBaCuO_7 is a trilayer material with a unit cell consisting of a CuO_2
bilayer with a CuO plane of chains in between. Starting with a model of
isolated planes coupled through a transverse matrix element, we consider the
possibility of intra as well as interplane pairing within a nearly
antiferromagnetic Fermi liquid model. Solutions of a set of three coupled BCS
equations for the gap exhibit orthorhombic symmetry with s- as well as d-wave
contributions. The temperature dependence and a-b in plane anisotropy of the
resulting penetration depth is discussed and compared with experiment.Comment: To appear in Physical Review B1 01Mar97; 12 pages with 10 figures;
RevTeX+eps
Classification software technique assessment
A catalog of software options is presented for the use of local user communities to obtain software for analyzing remotely sensed multispectral imagery. The resources required to utilize a particular software program are described. Descriptions of how a particular program analyzes data and the performance of that program for an application and data set provided by the user are shown. An effort is made to establish a statistical performance base for various software programs with regard to different data sets and analysis applications, to determine the status of the state-of-the-art
Digital computer processing of LANDSAT data for North Alabama
Computer processing procedures and programs applied to Multispectral Scanner data from LANDSAT are described. The output product produced is a level 1 land use map in conformance with a Universal Transverse Mercator projection. The region studied was a five-county area in north Alabama
A study and evaluation of image analysis techniques applied to remotely sensed data
An analysis of phenomena causing nonlinearities in the transformation from Landsat multispectral scanner coordinates to ground coordinates is presented. Experimental results comparing rms errors at ground control points indicated a slight improvement when a nonlinear (8-parameter) transformation was used instead of an affine (6-parameter) transformation. Using a preliminary ground truth map of a test site in Alabama covering the Mobile Bay area and six Landsat images of the same scene, several classification methods were assessed. A methodology was developed for automatic change detection using classification/cluster maps. A coding scheme was employed for generation of change depiction maps indicating specific types of changes. Inter- and intraseasonal data of the Mobile Bay test area were compared to illustrate the method. A beginning was made in the study of data compression by applying a Karhunen-Loeve transform technique to a small section of the test data set. The second part of the report provides a formal documentation of the several programs developed for the analysis and assessments presented
Multiplicative renormalizability and quark propagator
The renormalized Dyson-Schwinger equation for the quark propagator is
studied, in Landau gauge, in a novel truncation which preserves multiplicative
renormalizability. The renormalization constants are formally eliminated from
the integral equations, and the running coupling explicitly enters the kernels
of the new equations. To construct a truncation which preserves multiplicative
renormalizability, and reproduces the correct leading order perturbative
behavior, non-trivial cancellations involving the full quark-gluon vertex are
assumed in the quark self-energy loop. A model for the running coupling is
introduced, with infrared fixed point in agreement with previous
Dyson-Schwinger studies of the gauge sector, and with correct logarithmic tail.
Dynamical chiral symmetry breaking is investigated, and the generated quark
mass is of the order of the extension of the infrared plateau of the coupling,
and about three times larger than in the Abelian approximation, which violates
multiplicative renormalizability. The generated scale is of the right size for
hadronic phenomenology, without requiring an infrared enhancement of the
running coupling.Comment: 17 pages; minor corrections, comparison to lattice results added;
accepted for publication in Phys. Rev.
A Method for Reviewing the Accuracy and Reliability of a Five-Level Triage Process (Canadian Triage and Acuity Scale) in a Community Emergency Department Setting: Building the Crowding Measurement Infrastructure
Objectives. Triage data are widely used to evaluate patient flow, disease severity, and emergency department (ED) workload, factors used in ED crowding evaluation and management. We defined an indicator-based methodology that can be easily used to review the accuracy of Canadian Triage and Acuity Scale (CTAS) performance. Methods. A trained nurse reviewer (NR) retrospectively triaged two separate month's ED charts relative to a set of clinical indicators based on CTAS Chief Complaints. Interobserver reliability and accuracy were compared using Kappa and comparative statistics. Results. There were 2838 patients in Trial 1 and 3091 in Trial 2. The rate of inconsistent triage was 14% and 16% (Kappa 0.596 and 0.604). Clinical Indicators “pain scale, chest pain, musculoskeletal injury, respiratory illness, and headache” captured 68% and 62% of visits. Conclusions. We have demonstrated a system to measure the levels of process accuracy and reliability for triage over time. We identified five key clinical indicators which captured over 60% of visits. A simple method for quality review uses a small set of indicators, capturing a majority of cases. Performance consistency and data collection using indicators may be important areas to direct training efforts
The effect of uniaxial pressure on the magnetic anisotropy of the Mn_{12}-Ac single-molecule magnet
We study the effect of uniaxial pressure on the magnetic hysteresis loops of
the single-molecule magnet Mn_{12}-Ac. We find that the application of pressure
along the easy axis increases the fields at which quantum tunneling of
magnetization occurs. The observations are attributed to an increase in the
molecule's magnetic anisotropy constant D of 0.142(1)%/kbar. The increase in D
produces a small, but measurable increase in the effective energy barrier for
magnetization reversal. Density-functional theory calculations also predict an
increase in the barrier with applied pressure.Comment: version accepted by EPL; 6 pages, including 7 figures. Small changes
and added reference
Damage areas on selected LDEF aluminum surfaces
With the U.S. about to embark on a new space age, the effects of the space environment on a spacecraft during its mission lifetime become more relevant. Included among these potential effects are degradation and erosion due to micrometeoroid and debris impacts, atomic oxygen and ultraviolet light exposure as well as material alteration from thermal cycling, and electron and proton exposure. This paper focuses on the effects caused by micrometeoroid and debris impacts on several LDEF aluminum plates from four different bay locations: C-12, C-10, C-01, and E-09. Each plate was coated with either a white, black, or gray thermal paint. Since the plates were located at different orientations on the satellite, their responses to the hypervelocity impacts varied. Crater morphologies range from a series of craters, spall zones, domes, spaces, and rings to simple craters with little or no spall zones. In addition, each of these crater morphologies is associated with varying damage areas, which appear to be related to their respective bay locations and thus exposure angles. More than 5% of the exposed surface area examined was damaged by impact cratering and its coincident effects (i.e., spallation, delamination and blow-off). Thus, results from this analysis may be significant for mission and spacecraft planners and designers
- …