74 research outputs found

    Decoding Hippocampal Signaling Deficits After Traumatic Brain Injury

    Full text link
    There are more than 3.17 million people coping with long-term disabilities due to traumatic brain injury (TBI) in the United States. The majority of TBI research is focused on developing acute neuroprotective treatments to prevent or minimize these long-term disabilities. Therefore, chronic TBI survivors represent a large, underserved population that could significantly benefit from a therapy that capitalizes on the endogenous recovery mechanisms occurring during the weeks to months following brain trauma. Previous studies have found that the hippocampus is highly vulnerable to brain injury, in both experimental models of TBI and during human TBI. Although often not directly mechanically injured by the head injury, in the weeks to months following TBI, the hippocampus undergoes atrophy and exhibits deficits in long-term potentiation (LTP), a persistent increase in synaptic strength that is considered to be a model of learning and memory. Decoding the chronic hippocampal LTP and cell signaling deficits after brain trauma will provide new insights into the molecular mechanisms of hippocampal-dependent learning impairments caused by TBI and facilitate the development of effective therapeutic strategies to improve hippocampal-dependent learning for chronic survivors of TBI

    In situ measurements and model estimates of NO3 and NH4 uptake by different phytoplankton size fractions in the southern Benguela upwelling system.

    Full text link
    Bulk measurements can be made of phytoplankton standing stocks on a quasi-synoptic scale but it is more difficult to measure rates of production and nutrient uptake. We present a method to estimate nitrogen uptake rates in productive coastal environments. We use observed phytoplankton cell size distributions and ambient nitrogen concentrations to calculate uptake rates of nitrate, ammonium and total nitrogen by different size fractions of diverse phytoplankton communities in a coastal upwelling system. The data are disaggregated into size categories, uptake rates are calculated and these uptake rates are reaggregated to obtain bulk estimates. The calculations are applied to 72 natural assemblages for which nitrogen uptake rates and particle size distributions were measured textit in situ . The calculated values of total N uptake integrated across all size classes are similar to those of textit in situ bulk measurements (N slope=0.90), (NH _ 4 slope=0.96) indicating dependence of NH _ 4 and total N uptake on ambient N concentrations and cell size distributions of the phytoplankton assemblages. NO _ 3 uptake was less well explained by cell size and ambient concentrations, but regressions between measured and estimated rates were still significant. The results suggest that net nitrogen dynamics can be quantified at an assemblage scale using size dependencies of Michaelis-Menten uptake parameters. These methods can be applied to particle size distributions that have been routinely measured in eutrophic systems to estimate and subsequently analyse variability in nitrogen uptake

    Reactive oxygen species mediate activitydependent neuron-glia signaling in output fibers of the hippocampus

    Full text link
    Nonsynaptic signaling is becoming increasingly appreciated in studies of activity-dependent changes in the nervous system. We investigated the types of neuronal activity that elicit nonsynaptic communication between neurons and glial cells in hippocampal output fibers. High-frequency, but not lowfrequency, action potential firing in myelinated CA1 axons of the hippocampus resulted in increased phosphorylation of the oligodendrocyte-specific protein myelin basic protein (MBP). This change was blocked by tetrodotoxin, indicating that axonally generated action potentials were necessary to regulate the phosphorylation state of MBP. Furthermore, scavengers of the reactive oxygen species superoxide and hydrogen peroxide and nitric oxide synthase inhibitors prevented activation of this neuron–glia signaling pathway. These results indicate that, during periods of increased neuronal activity in area CA1 of th

    Is temperature an important variable in recovery after mild traumatic brain injury? [version 1; referees: 2 approved]

    Full text link
    With nearly 42 million mild traumatic brain injuries (mTBIs) occurring worldwide every year, understanding the factors that may adversely influence recovery after mTBI is important for developing guidelines in mTBI management. Extensive clinical evidence exists documenting the detrimental effects of elevated temperature levels on recovery after moderate to severe TBI. However, whether elevated temperature alters recovery after mTBI or concussion is an active area of investigation. Individuals engaged in exercise and competitive sports regularly experience body and brain temperature increases to hyperthermic levels and these temperature increases are prolonged in hot and humid ambient environments. Thus, there is a strong potential for hyperthermia to alter recovery after mTBI in a subset of individuals at risk for mTBI. Preclinical mTBI studies have found that elevating brain temperature to 39°C before mTBI significantly increases neuronal death within the cortex and hippocampus and also worsens cognitive deficits. This review summarizes the pathology and behavioral problems of mTBI that are exacerbated by hyperthermia and discusses whether hyperthermia is a variable that should be considered after concussion and mTBI. Finally, underlying pathophysiological mechanisms responsible for hyperthermia-induced altered responses to mTBI and potential gender considerations are discussed
    corecore