7 research outputs found
Time synchronization for deterministic communication
Deterministic communication is required for applications of several industry
verticals including manufacturing, automotive, financial, and health care, etc.
These applications rely on reliable and time-synchronized delivery of
information among the communicating devices. Therefore, large delay variations
in packet delivery or inaccuracies in time synchronization cannot be tolerated.
In particular, the industrial revolution on digitization, connectivity of
digital and physical systems, and flexible production design require
deterministic and time-synchronized communication. A network supporting
deterministic communication guarantees data delivery in a specified time with
high reliability. The IEEE 802.1 TSN task group is developing standards to
provide deterministic communication through IEEE 802 networks. The IEEE 802.1AS
standard defines time synchronization mechanism for accurate distribution of
time among the communicating devices. The time synchronization accuracy depends
on the accurate calculation of the residence time which is the time between the
ingress and the egress ports of the bridge and includes the processing,
queuing, transmission, and link latency of the timing information. This paper
discusses time synchronization mechanisms supported in current wired and
wireless integrated systems
Towards Deterministic Communications in 6G Networks: State of the Art, Open Challenges and the Way Forward
Over the last decade, society and industries are undergoing rapid
digitization that is expected to lead to the evolution of the cyber-physical
continuum. End-to-end deterministic communications infrastructure is the
essential glue that will bridge the digital and physical worlds of the
continuum. We describe the state of the art and open challenges with respect to
contemporary deterministic communications and compute technologies: 3GPP 5G,
IEEE Time-Sensitive Networking, IETF DetNet, OPC UA as well as edge computing.
While these technologies represent significant technological advancements
towards networking Cyber-Physical Systems (CPS), we argue in this paper that
they rather represent a first generation of systems which are still limited in
different dimensions. In contrast, realizing future deterministic communication
systems requires, firstly, seamless convergence between these technologies and,
secondly, scalability to support heterogeneous (time-varying requirements)
arising from diverse CPS applications. In addition, future deterministic
communication networks will have to provide such characteristics end-to-end,
which for CPS refers to the entire communication and computation loop, from
sensors to actuators. In this paper, we discuss the state of the art regarding
the main challenges towards these goals: predictability, end-to-end technology
integration, end-to-end security, and scalable vertical application
interfacing. We then present our vision regarding viable approaches and
technological enablers to overcome these four central challenges. Key
approaches to leverage in that regard are 6G system evolutions, wireless
friendly integration of 6G into TSN and DetNet, novel end-to-end security
approaches, efficient edge-cloud integrations, data-driven approaches for
stochastic characterization and prediction, as well as leveraging digital twins
towards system awareness.Comment: 22 pages, 8 figure
Burstiness of Interference Pikes in Wireless Networks
The temporal dynamics of interference in wireless networks affects their performance but has only been studied for some cases. This article addresses this gap by analyzing high-interference events, called pikes, concluding that they arrive in bursts in many cases. Specifically, we show that in Poisson networks with random access and multipath fading, the pike interarrival time increases with the interference correlation, irrespective of the source of correlation and burstiness of pikes. To demonstrate the applicability of this theory, we conduct a measurement campaign with an automotive user in different commercial 4G cellular networks. The experimental results indicate that interference pikes are bursty in the real world as well
Recursive Pyramid Algorithm-Based Discrete Wavelet Transform for Reactive Power Measurement in Smart Meters
Measurement of the active, reactive, and apparent power is one of the most fundamental tasks of smart meters in energy systems. Recently, a number of studies have employed the discrete wavelet transform (DWT) for power measurement in smart meters. The most common way to implement DWT is the pyramid algorithm; however, this is not feasible for practical DWT computation because it requires either a log N cascaded filter or O (N) word size memory storage for an input signal of the N-point. Both solutions are too expensive for practical applications of smart meters. It is proposed that the recursive pyramid algorithm is more suitable for smart meter implementation because it requires only word size storage of L × Log (N-L), where L is the length of filter. We also investigated the effect of varying different system parameters, such as the sampling rate, dc offset, phase offset, linearity error in current and voltage sensors, analog to digital converter resolution, and number of harmonics in a non-sinusoidal system, on the reactive energy measurement using DWT. The error analysis is depicted in the form of the absolute difference between the measured and the true value of the reactive energy
A reliable energy-balancing multi-group (REM) routing protocol for firefighter communication networks
In a fire rescue operation, a fast, reliable, and robust communication system is needed to quickly take control of the emergent situation. One of the most important issues in firefighter communication networks (FCNs) is the design of a specialized routing protocol that caters to the specific needs of the fire rescue application. This paper proposes a reliable, energy-balancing, multi-group (REM) routing protocol for an FCN. Since firefighters work in groups, a cluster-based hierarchical approach was adopted. REM is intended to achieve reliability and energy balancing in data communication by incorporating metric-based cluster head (CH) selection, CH rotation among cluster members, and a routing algorithm. Within a cluster, the node with highest metric value based on residual energy and number of connections is chosen as the CH. The CH's responsibilities are rotated periodically among the cluster members. REM chooses nodes with a higher metric based on residual energy, number of connections, and number of hopsto the base station (BS) as the next hop for forwarding data to the BS. This helps to achieve reliability, less delay, and energy balancing when compared with other routing schemes, as evident from the simulation results.Peer reviewe