2 research outputs found
Whole Genome Sequencing of Methicillin-Resistant Staphylococcus epidermidis Clinical Isolates Reveals Variable Composite SCCmec ACME among Different STs in a Tertiary Care Hospital in Oman
Staphylococcus epidermidis has been recently recognized as an emerging nosocomial pathogen. There are concerns over the increasing virulence potential of this commensal due to the capabilities of transferring mobile genetic elements to Staphylococcus aureus through staphylococcal chromosomal cassette (SCCmec) and the closely related arginine catabolic mobile element (ACME) and the copper and mercury resistance island (COMER). The potential pathogenicity of S. epidermidis, particularly from blood stream infections, has been poorly investigated. In this study, 24 S. epidermidis isolated from blood stream infections from Oman were investigated using whole genome sequence analysis. Core genome phylogenetic trees revealed one third of the isolates belong to the multidrug resistance ST-2. Genomic analysis unraveled a common occurrence of SCCmec type IV and ACME element predominantly type I arranged in a composite island. The genetic composition of ACME was highly variable among isolates of same or different STs. The COMER-like island was absent in all of our isolates. Reduced copper susceptibility was observed among isolates of ST-2 and ACME type I, followed by ACME type V. In conclusion, in this work, we identify a prevalent occurrence of highly variable ACME elements in different hospital STs of S. epidermidis in Oman, thus strongly suggesting the hypothesis that ACME types evolved from closely related STs
Human macrophages and monocyte-derived dendritic cells stimulate the proliferation of endothelial cells through midkine production.
The cytokine midkine (MK) is a growth factor that is involved in different physiological processes including tissue repair, inflammation, the development of different types of cancer and the proliferation of endothelial cells. The production of MK by primary human macrophages and monocyte-derived dendritic cells (MDDCs) was never described. We investigated whether MK is produced by primary human monocytes, macrophages and MDDCs and the capacity of macrophages and MDDCs to modulate the proliferation of endothelial cells through MK production. The TLR stimulation of human monocytes, macrophages and MDDCs induced an average of ≈200-fold increase in MK mRNA and the production of an average of 78.2, 62, 179 pg/ml MK by monocytes, macrophages and MDDCs respectively (p < 0.05). MK production was supported by its detection in CD11c+ cells, CLEC4C+ cells and CD68+ cells in biopsies of human tonsils showing reactive lymphoid follicular hyperplasia. JSH-23, which selectively inhibits NF-κB activity, decreased the TLR-induced production of MK in PMBCs, macrophages and MDDCs compared to the control (p < 0.05). The inhibition of MK production by macrophages and MDDCs using anti-MK siRNA decreased the capacity of their supernatants to stimulate the proliferation of endothelial cells (p = 0.01 and 0.04 respectively). This is the first study demonstrating that the cytokine MK is produced by primary human macrophages and MDDCs upon TLR triggering, and that these cells can stimulate endothelial cell proliferation through MK production. Our results also suggest that NF-κB plays a potential role in the production of MK in macrophages and MDDCs upon TLR stimulation. The production of MK by macrophages and MDDCs and the fact that these cells can enhance the proliferation of endothelial cells by producing MK are novel immunological phenomena that have potentially important therapeutic implications