143 research outputs found

    Z' mass limits and the naturalness of supersymmetry

    Full text link
    The discovery of a 125 GeV Higgs boson and rising lower bounds on the masses of superpartners have lead to concerns that supersymmetric models are now fine tuned. Large stop masses, required for a 125 GeV Higgs, feed into the electroweak symmetry breaking conditions through renormalisation group equations forcing one to fine tune these parameters to obtain the correct electroweak vacuum expectation value. Nonetheless this fine tuning depends crucially on our assumptions about the supersymmetry breaking scale. At the same time U(1)U(1) extensions provide the most compelling solution to the μ\mu-problem, which is also a naturalness issue, and allow the tree level Higgs mass to be raised substantially above MZM_Z. These very well motivated supersymmetric models predict a new ZZ' boson which could be discovered at the LHC and the naturalness of the model requires that the ZZ' boson mass should not be too far above the TeV scale. Moreover this fine tuning appears at the tree level, making it less dependent on assumptions about the supersymmetry breaking mechanism. Here we study this fine tuning for several U(1)U(1) supersymmetric extensions of the Standard Model and compare it to the situation in the MSSM where the most direct tree level fine tuning can be probed through chargino mass limits. We show that future LHC ZZ' searches are extremely important for challenging the most natural scenarios in these models.Comment: 58 pages, 5 figures; typos corrected, references added; matches version to be published in Phys. Rev.

    Status of the scalar singlet dark matter model

    Get PDF

    Threshold Corrections in the Exceptional Supersymmetric Standard Model

    Get PDF
    We calculate threshold corrections to the running gauge and Yukawa couplings in the Exceptional Supersymmetric Standard Model (E6SSM) and analyse the more precise and reliable mass spectra in a constrained model (CE6SSM). Full expressions for the corrections are provided and the implementation into a spectrum generator is described. We find a dramatic reduction in the matching scale dependency of the masses of many states and observe a significant adjustment of the correlation of low-scale physical masses and high-scale parameters. Still, in substantial regions of parameter space the mass of the lightest Higgs is compatible with the new boson discovered at the LHC and the model satisfies limits from collider searches for squark, gluinos and Z' bosons. We study the implications for gauge coupling unification from a new dependency of the spectrum on so-called survival Higgs fields which cannot be addressed without the inclusion of the threshold corrections.Comment: 59 pages, 25 figures, v2 fixed typo and rephrased parts of section 5.3.1, v2 accepted for publication in Physical Review

    Phenomenological Consequences of the Constrained Exceptional Supersymmetric Standard Model

    Full text link
    The Exceptional Supersymmetric Standard Model (E6_6SSM) provides a low energy alternative to the MSSM, with an extra gauged U(1)N_N symmetry, solving the μ\mu-problem of the MSSM. Inspired by the possible embedding into an E6_6 GUT, the matter content fills three generations of E6_6 multiplets, thus predicting exciting exotic matter such as diquarks or leptoquarks. We present predictions from a constrained version of the model (cE6_6SSM), with a universal scalar mass m0m_0, trilinear mass AA and gaugino mass M1/2M_{1/2}. We reveal a large volume of the cE6_6SSM parameter space where the correct breakdown of the gauge symmetry is achieved and all experimental constraints satisfied. We predict a hierarchical particle spectrum with heavy scalars and light gauginos, while the new exotic matter can be light or heavy depending on parameters. We present representative cE6_6SSM scenarios, demonstrating that there could be light exotic particles, like leptoquarks and a U(1)N_N Z' boson, with spectacular signals at the LHC.Comment: Contribution to the proceedings of SUSY 09, Boston, USA, June 2009, 4 page

    LHC Signatures of the Constrained Exceptional Supersymmetric Standard Model

    Full text link
    We discuss two striking Large Hadron Collider (LHC) signatures of the constrained version of the exceptional supersymmetric standard model (cE6SSM), based on a universal high energy soft scalar mass m_0, soft trilinear coupling A_0 and soft gaugino mass M_{1/2}. The first signature we discuss is that of light exotic colour triplet charge 1/3 fermions, which we refer to as D-fermions. We calculate the LHC production cross section of D-fermions, and discuss their decay patterns. Secondly we discuss the E6 type U(1)_N spin-1 Z' gauge boson and show how it may decay into exotic states, increasing its width and modifying the line shape of the dilepton final state. We illustrate these features using two representative cE6SSM benchmark points, including an "early LHC discovery" point, giving the Feynman rules and numerical values for the relevant couplings in order to facilitate further studies.Comment: 30 pages, 5 figures, corrections to figure caption

    Next-to-minimal SOFTSUSY

    Get PDF
    We describe an extension to the SOFTSUSY program that provides for the calculation of the sparticle spectrum in the Next-to-Minimal Supersymmetric Standard Model (NMSSM), where a chiral superfield that is a singlet of the Standard Model gauge group is added to the Minimal Supersymmetric Standard Model (MSSM) fields. Often, a Z3\mathbb{Z}_{3} symmetry is imposed upon the model. SOFTSUSY can calculate the spectrum in this case as well as the case where general Z3\mathbb{Z}_{3} violating (denoted as \Z3\,\mathbf{\backslash}\mkern-11.0mu{\mathbb{Z}}_{3}) terms are added to the soft supersymmetry breaking terms and the superpotential. The user provides a theoretical boundary condition for the couplings and mass terms of the singlet. Radiative electroweak symmetry breaking data along with electroweak and CKM matrix data are used as weak-scale boundary conditions. The renormalisation group equations are solved numerically between the weak scale and a high energy scale using a nested iterative algorithm. This paper serves as a manual to the NMSSM mode of the program, detailing the approximations and conventions used
    corecore