3 research outputs found
Effects of lengthscales and attractions on the collapse of hydrophobic polymers in water
We present results from extensive molecular dynamics simulations of collapse
transitions of hydrophobic polymers in explicit water focused on understanding
effects of lengthscale of the hydrophobic surface and of attractive
interactions on folding. Hydrophobic polymers display parabolic, protein-like,
temperature-dependent free energy of unfolding. Folded states of small
attractive polymers are marginally stable at 300 K, and can be unfolded by
heating or cooling. Increasing the lengthscale or decreasing the polymer-water
attractions stabilizes folded states significantly, the former dominated by the
hydration contribution. That hydration contribution can be described by the
surface tension model, , where the surface
tension, , is lengthscale dependent and decreases monotonically with
temperature. The resulting variation of the hydration entropy with polymer
lengthscale is consistent with theoretical predictions of Huang and Chandler
(Proc. Natl. Acad. Sci.,97, 8324-8327, 2000) that explain the blurring of
entropy convergence observed in protein folding thermodynamics. Analysis of
water structure shows that the polymer-water hydrophobic interface is soft and
weakly dewetted, and is characterized by enhanced interfacial density
fluctuations. Formation of this interface, which induces polymer folding, is
strongly opposed by enthalpy and favored by entropy, similar to the
vapor-liquid interface.Comment: 24 pages, 5 figure
Osmolyte Trimethylamine-N-Oxide Does Not Affect the Strength of Hydrophobic Interactions: Origin of Osmolyte Compatibility
Osmolytes are small organic solutes accumulated at high concentrations by cells/tissues in response to osmotic stress. Osmolytes increase thermodynamic stability of folded proteins and provide protection against denaturing stresses. The mechanism of osmolyte compatibility and osmolyte-induced stability has, therefore, attracted considerable attention in recent years. However, to our knowledge, no quantitative study of osmolyte effects on the strength of hydrophobic interactions has been reported. Here, we present a detailed molecular dynamics simulation study of the effect of the osmolyte trimethylamine-N-oxide (TMAO) on hydrophobic phenomena at molecular and nanoscopic length scales. Specifically, we investigate the effects of TMAO on the thermodynamics of hydrophobic hydration and interactions of small solutes as well as on the folding-unfolding conformational equilibrium of a hydrophobic polymer in water. The major conclusion of our study is that TMAO has almost no effect either on the thermodynamics of hydration of small nonpolar solutes or on the hydrophobic interactions at the pair and many-body level. We propose that this neutrality of TMAO toward hydrophobic interactions—one of the primary driving forces in protein folding—is at least partially responsible for making TMAO a “compatible” osmolyte. That is, TMAO can be tolerated at high concentrations in organisms without affecting nonspecific hydrophobic effects. Our study implies that protein stabilization by TMAO occurs through other mechanisms, such as unfavorable water-mediated interaction of TMAO with the protein backbone, as suggested by recent experimental studies. We complement the above calculations with analysis of TMAO hydration and changes in water structure in the presence of TMAO molecules. TMAO is an amphiphilic molecule containing both hydrophobic and hydrophilic parts. The precise balance of the effects of hydrophobic and hydrophilic segments of the molecule appears to explain the virtual noneffect of TMAO on the strength of hydrophobic interactions