1,378 research outputs found

    Neutrino propagation in a random magnetic field

    Get PDF
    The active-sterile neutrino conversion probability is calculated for neutrino propagating in a medium in the presence of random magnetic field fluctuations. Necessary condition for the probability to be positive definite is obtained. Using this necessary condition we put constraint on the neutrino magnetic moment from active-sterile electron neutrino conversion in the early universe hot plasma and in supernova.Comment: 11 page

    Semileptonic B Decays and Determination of |Vub|

    Full text link
    Semileptonic decays of the B mesons provide an excellent probe for the weak and strong interactions of the bottom quark. The large data samples collected at the B Factories have pushed the experimental studies of the semileptonic B decays to a new height and stimulated significant theoretical developments. I review recent progresses in this fast-evolving field, with an emphasis on the determination of the magnitude of the Cabibbo-Kobayashi-Maskawa matrix element |Vub|.Comment: 16 pages, 4 figures, accepted by Mod. Phys. Lett.

    Matter effects on neutrino oscillations in gravitational and magnetic fields

    Get PDF
    When neutrinos propagate in a background, their gravitational couplings are modified by their weak interactions with the particles in the background. In a medium that contains electrons but no muons or taons, the matter-induced gravitational couplings of neutrinos are different for the various neutrino flavors, and they must be taken into account in describing the phenomena associated with the neutrino oscillations in the presence of strong gravitational fields. Here we incorporate those couplings in that description, including also the effects of a magnetic field, and consider the implications that they have for the emission of high energy neutrinos in the vicinity of Active Galactic Nuclei.Comment: Latex, 12 page

    Radiative decays of the Y (1S) to a pair of charged hadrons

    Get PDF
    Using data obtained with the CLEO III detector, running at the Cornell Electron Storage Ring (CESR), we report on a new study of exclusive radiative Υ(1S) decays into the final states γπ^+π^-, γK^+K^-, and γpp̅ . We present branching ratio measurements for the decay modes Υ(1S)→γf_2(1270), Υ(1S)→γf′_2(1525), and Υ(1S)→γK^+K^-; helicity production ratios for f_2(1270) and f′_2(1525); upper limits for the decay Υ(1S)→γf_J(2200), with f_J(2220)→π^+π^-, K^+K^-, pp̅ ; and an upper limit for the decay Υ(1S)→γX(1860), with X(1860)→γpp̅

    The factorizable amplitude in B0π+πB^0 \to \pi^+ \pi^-

    Full text link
    Using the measured spectrum shape for BπνB \to \pi \ell \nu, the rate for B+π+π0B^+ \to \pi^+ \pi^0, information on the Cabibbo-Kobayashi-Maskawa (CKM) matrix element Vub|V_{ub}|, and theoretical inputs from factorization and lattice gauge theory, we obtain an improved estimate of the ``tree'' contribution to B0π+πB^0 \to \pi^+ \pi^-. We find the branching ratio \b(B^0 \to \pi^+ \pi^-)|_{\rm tree} = (5.25^{+1.67}_{-0.50}) \times 10^{-6}, to be compared with the experimental value \b(B^0 \to \pi^+ \pi^-) = (4.55 \pm 0.44) \times 10^{-6}. The fit implies Vub=(3.62±0.34)×103|V_{ub}| = (3.62 \pm 0.34) \times 10^{-3}. Implications for tree-penguin interference in B0π+πB^0 \to \pi^+ \pi^- and for other charmless BB decays are discussed.Comment: 11 pages, LaTeX, 3 figures, to be submitted to Phys. Rev.

    Spin-Flavour Oscillations and Neutrinos from SN1987A

    Get PDF
    The neutrino signal from SN1987A is analysed with respect to spin-flavour oscillations between electron antineutrinos, νˉe\bar{\nu}_{e}, and muon neutrinos, νμ\nu_{\mu}, by means of a maximum likelihood analysis. Following Jegerlehner et al. best fit values for the total energy released in neutrinos, EtE_t, and the temperature of the electron antineutrino, TνˉeT_{\bar{\nu}_{e}}, for a range of mixing parameters and progenitor models are calculated. In particular the dependence of the inferred quantities on the metallicity of the supernova is investigated and the uncertainties involved in using the neutrino signal to determine the neutrino magnetic moment are pointed out.Comment: 14 pages, RevTeX, 4 figures, to appear in Physical Review

    High-energy neutrino conversion and the lepton asymmetry in the universe

    Get PDF
    We study matter effects on oscillations of high-energy neutrinos in the Universe. Substantial effect can be produced by scattering of the neutrinos from cosmological sources (z\gta 1) on the relic neutrino background, provided that the latter has large CP-asymmetry: \eta\equiv (n_\nu-n_{\bar{\nu}})/n_\gamma\gta 1, where nνn_\nu, nνˉn_{\bar{\nu}} and nγn_\gamma are the concentrations of neutrinos, antineutrinos and photons. We consider in details the dynamics of conversion in the expanding neutrino background. Applications are given to the diffuse fluxes of neutrinos from GRBs, AGN, and the decay of super-heavy relics. We find that the vacuum oscillation probability can be modified by (1020)\sim (10-20)% and in extreme cases allowed by present bounds on η\eta the effect can reach 100\sim 100%. Signatures of matter effects would consist (i) for both active-active and active-sterile conversion, in a deviation of the numbers of events produced in a detector by neutrinos of different flavours, Nα (α=e,μ,τ)N_{\alpha}~(\alpha=e,\mu,\tau), and of their ratios from the values given by vacuum oscillations; such deviations can reach 515\sim 5-15%, (ii) for active-sterile conversion, in a characteristic energy dependence of the ratios Ne/Nμ,Ne/Nτ,Nμ/NτN_{e}/N_{\mu},N_{e}/N_{\tau},N_{\mu}/N_{\tau}. Searches for these matter effects will probe large CP and lepton asymmetries in the universe.Comment: 32 pages, RevTeX, 16 figures. Substantial changes in the treatment of conversion effects in the relic neutrino background and of active-active oscillations of high-energy neutrinos. Figures and references added; conclusions partially modifie

    A comprehensive study of neutrino spin-flavour conversion in supernovae and the neutrino mass hierarchy

    Full text link
    Resonant spin-flavour (RSF) conversions of supernova neutrinos, which is induced by the interaction between the nonzero neutrino magnetic moment and supernova magnetic fields, are studied for both normal and inverted mass hierarchy. As the case for the pure matter-induced neutrino oscillation (Mikheyev--Smirnov--Wolfenstein (MSW) effect), we find that the RSF transitions are strongly dependent on the neutrino mass hierarchy as well as the value of θ13\theta_{13}. Flavour conversions are solved numerically for various neutrino parameter sets, with presupernova profile calculated by Woosley and Weaver. In particular, it is very interesting that the RSF-induced \nu_\rme\to\bar\nu_\rme transition occurs, if the following conditions are all satisfied: the value of μνB\mu_\nu B (μν\mu_\nu is the neutrino magnetic moment, and BB is the magnetic field strength) is sufficiently strong, the neutrino mass hierarchy is inverted, and the value of θ13\theta_{13} is large enough to induce adiabatic MSW resonance. In this case, the strong peak due to original \nu_\rme emitted from neutronization burst would exist in time profile of the neutrino events detected at the Super-Kamiokande detector. If this peak were observed in reality, it would provide fruitful information on the neutrino properties. On the other hand, characters of the neutrino spectra are also different between the neutrino models, but we find that there remains degeneracy among several models. Dependence on presupernova models is also discussed.Comment: 23 pages, 11 figures, corrected minor typos, added references. Final version to appear in Journal of Cosmology and Astroparticle Physic

    Tracing very high energy neutrinos from cosmological distances in ice

    Full text link
    Astrophysical sources of ultrahigh energy neutrinos yield tau neutrino fluxes due to neutrino oscillations. We study in detail the contribution of tau neutrinos with energies above PeV relative to the contribution of the other flavors. We consider several different initial neutrino fluxes and include tau neutrino regeneration in transit through the Earth and energy loss of charged leptons. We discuss signals of tau neutrinos in detectors such as IceCube, RICE and ANITA.Comment: 27 pages, 19 figure

    Resonant Spin-Flavor Conversion of Supernova Neutrinos and Deformation of the Electron Antineutrino Spectrum

    Get PDF
    The neutrino spin-flavor conversion of \bar\nu_e and \nu_\mu which is induced by the interaction of the Majorana neutrino magnetic moment and magnetic fields in the collapse-driven supernova is investigated in detail. We calculate the conversion probability by using the latest precollapse models of Woosley and Weaver (1995), and also those of Nomono and Hashimoto (1988), changing the stellar mass and metallicity in order to estimate the effect of the astrophysical uncertainties. Contour maps of the conversion probability are given for all the models as a function of neutrino mass squared difference and the neutrino magnetic moment times magnetic fields. It is shown that in the solar metallicity models some observational effects are expected with \Delta m^2 = 10^{-5}--10^{-1} [eV^2] and \mu_\nu >~ 10^{-12} (10^9 G / B_0) [\mu_B], where B_0 is the strength of the magnetic fields at the surface of the iron core. We also find that although the dependence on the stellar models or stellar mass is not so large, the metallicity of precollapse stars has considerable effects on this conversion. Such effects may be seen in a supernova in the Large or Small Magellanic Clouds, and should be taken into account when one considers an upper bound on \mu_\nu from the SN1987A data.Comment: 19 pages, LaTeX, using revtex. To appear in Phys. Rev. D. 16 figures attatche
    corecore