3 research outputs found

    Crystal structure of hexakis(dimethyl sulfoxide-κO)cobalt(II) bis[trichlorido(quinoline-κN)cobaltate(II)]

    Get PDF
    There are few reports that describe crystal structures of compounds containing cobalt complexed to either dimethyl sulfoxide (Me2SO) or quinoline (C9H7N). The title compound, [Co(C2H6OS)6][CoCl3(C9H7N)]2, is a cobalt salt in which the metal ion is complexed to both Me2SO and quinoline. In particular, we observed that anhydrous cobalt(II) chloride reacts with quinoline in Me2SO to form a salt that is to be formulated as [CoII(Me2SO)6]2+{[CoIICl3quinoline]2 ‾ }. The CoII atom in the cation portion of this molecule lies on a inversion center and is bound to the O atoms of six Me2SO moieties in an octahedral configuration, while the CoII atom in the anion is attached to three chloride ligands and one quinoline moiety in a tetrahedral arrangement

    The molecular determinants of R-roscovitine block of hERG channels.

    No full text
    Human ether-à-go-go-related gene (Kv11.1, or hERG) is a potassium channel that conducts the delayed rectifier potassium current (IKr) during the repolarization phase of cardiac action potentials. hERG channels have a larger pore than other K+channels and can trap many unintended drugs, often resulting in acquired LQTS (aLQTS). R-roscovitine is a cyclin-dependent kinase (CDK) inhibitor that induces apoptosis in colorectal, breast, prostate, multiple myeloma, other cancer cell lines, and tumor xenografts, in micromolar concentrations. It is well tolerated in phase II clinical trials. R-roscovitine inhibits open hERG channels but does not become trapped in the pore. Two-electrode voltage clamp recordings from Xenopus oocytes expressing wild-type (WT) or hERG pore mutant channels (T623A, S624A, Y652A, F656A) demonstrated that compared to WT hERG, T623A, Y652A, and F656A inhibition by 200 μM R-roscovitine was ~ 48%, 29%, and 73% weaker, respectively. In contrast, S624A hERG was inhibited more potently than WT hERG, with a ~ 34% stronger inhibition. These findings were further supported by the IC50 values, which were increased for T623A, Y652A and F656A (by ~5.5, 2.75, and 42 fold respectively) and reduced 1.3 fold for the S624A mutant. Our data suggest that while T623, Y652, and F656 are critical for R-roscovitine-mediated inhibition, S624 may not be. Docking studies further support our findings. Thus, R-roscovitine's relatively unique features, coupled with its tolerance in clinical trials, could guide future drug screens
    corecore