5 research outputs found

    Analysing decadal-scale crescentic bar dynamics using satellite imagery: A case study at Anmok beach, South Korea

    Get PDF
    Understanding long-term sandbar dynamics can be crucial for informed coastal zone management, but is often hampered by data availability. To increase the number of sandbar observations available from bathymetric surveys, this study proposes and evaluates a method to manually extract the sandbar location using freely available satellite imagery for the case study of Anmok beach in South Korea. Validation of the satellite extracted sandbar locations against 9 in-situ measurements shows good agreement with errors well within the pixel resolution of the satellite imagery (i.e. 30 m for Landsat missions). The applicability of the method is constrained to locations where (1) the cross-shore crescentic length scales are larger than the image resolution, (2) frequent wave breaking and clouds are absent and (3) the water clarity is sufficient to enable the manual extraction of the sandbar crest line. Using the additional sandbar observations from the satellite imagery significantly increases the temporal extent and resolution of the dataset for Anmok beach. This allows the study of sandbar characteristics, dynamics and impacts of human interventions to an extent that would not have been possible without the satellite imagery. Within the study period 1990–2017 it is found that the sandbar maintains a persistent crescentic pattern that is only altered during prolonged and very intense storm conditions. The cumulative alongshore migration of the sandbars is investigated and found to be in the order of hundreds of meters over the 27 years study period. Comparing the sandbar characteristics prior and after the construction of Gangneung port shows that both the amplitudes and wavelengths of the sandbar crescents near the port have decreased after its construction.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Rivers, Ports, Waterways and Dredging EngineeringEnvironmental Fluid Mechanic

    A Clustering Approach for Predicting Dune Morphodynamic Response to Storms Using Typological Coastal Profiles: A Case Study at the Dutch Coast

    Get PDF
    Dune erosion driven by extreme marine storms can damage local infrastructure or ecosystems and affect the long-term flood safety of the hinterland. These storms typically affect long stretches (∌100 km) of sandy coastlines with variable topo-bathymetries. The large spatial scale makes it computationally challenging for process-based morphological models to be used for predicting dune erosion in early warning systems or probabilistic assessments. To alleviate this, we take a first step to enable efficient estimation of dune erosion using the Dutch coast as a case study, due to the availability of a large topo-bathymetric dataset. Using clustering techniques, we reduce 1,430 elevation profiles in this dataset to a set of typological coastal profiles (TCPs), that can be employed to represent dune erosion dynamics along the whole coast. To do so, we use the topo-bathymetric profiles and historic offshore wave and water level conditions, along with simulations of dune erosion for a number of representative storms to characterize each profile. First, we identify the most important drivers of dune erosion variability at the Dutch coast, which are identified as the pre-storm beach geometry, nearshore slope, tidal level and profile orientation. Then using clustering methods, we produce various sets of TCPs, and we test how well they represent dune morphodynamics by cross-validation on the basis of a benchmark set of dune erosion simulations. We find good prediction skill (0.83) with 100 TCPs, representing a 93% input and associated computational costs reduction. These TCPs can be used in a probabilistic model forced with a range of offshore storm conditions, enabling national scale coastal risk assessments. Additionally, the presented techniques could be used in a global context, utilizing elevation data from diverse sandy coastlines to obtain a first order prediction of dune erosion around the world.Coastal Engineerin

    Estimating dune erosion at the regional scale using a meta-model based on neural networks

    Get PDF
    Sandy beaches and dune systems have high recreational and ecological value, and they offer protection against flooding during storms. At the same time, these systems are very vulnerable to storm impacts. Process-based numerical models are presently used to assess the morphological changes of dune and beach systems during storms. However, such models come with high computational costs, hindering their use in real-life applications which demand many simulations and/or involve a large spatial-temporal domain. Here we design a novel meta-model to predict dune erosion volume (DEV) at the Dutch coast, based on artificial neural networks (ANNs), trained with cases from process-based modeling. First, we reduce an initial database of 1/41400 observed sandy profiles along the Dutch coastline to 100 representative typological coastal profiles (TCPs). Next, we synthesize a set of plausible extreme storm events, which reproduces the probability distributions and statistical dependencies of offshore wave and water level records. We choose 100 of these events to simulate the dune response of the 100 TCPs using the process-based model XBeach, resulting in 10 000 cases. Using these cases as training data, we design a two-phase meta-model, comprised of a classifying ANN (which predicts the occurrence (or not) of erosion) and a regression ANN (which gives a DEV prediction). Validation against a benchmark dataset created with XBeach and a sparse set of available dune erosion observations shows high prediction skill with a skill score of 0.82. The meta-model can predict post-storm DEV 103-104 times faster (depending on the duration of the storm) than running XBeach. Hence, this model may be integrated in early warning systems or allow coastal engineers and managers to upscale storm forcing to dune response investigations to large coastal areas with relative ease.Coastal Engineerin

    Distribution of global sea turtle nesting explained from regional-scale coastal characteristics

    No full text
    Climate change and human activity threaten sea turtle nesting beaches through increased flooding and erosion. Understanding the environmental characteristics that enable nesting can aid to preserve and expand these habitats. While numerous local studies exist, a comprehensive global analysis of environmental influences on the distribution of sea turtle nesting habitats remains largely unexplored. Here, we relate the distribution of global sea turtle nesting to 22 coastal indicators, spanning hydrodynamic, atmospheric, geophysical, habitat, and human processes. Using state-of-the-art global datasets and a novel 50-km-resolution hexagonal coastline grid (Coastgons), we employ machine learning to identify spatially homogeneous patterns in the indicators and correlate these to the occurrence of nesting grounds. Our findings suggest sea surface temperature, tidal range, extreme surges, and proximity to coral and seagrass habitats significantly influence global nesting distribution. Low tidal ranges and low extreme surges appear to be particularly favorable for individual species, likely due to reduced nest flooding. Other indicators, previously reported as influential (e.g., precipitation and wind speed), were not as important in our global-scale analysis. Finally, we identify new, potentially suitable nesting regions for each species. On average, 23 % of global coastal regions between - 39 ∘ and 48 ∘ latitude could be suitable for nesting, while only 7 % is currently used by turtles, showing that the realized niche is significantly smaller than the fundamental niche, and that there is potential for sea turtles to expand their nesting habitat. Our results help identify suitable nesting conditions, quantify potential hazards to global nesting habitats, and lay a foundation for nature-based solutions to preserve and potentially expand these habitats.Coastal EngineeringCivil Engineering & Geoscience

    Long-term bar dynamics using satellite imagery: A case study at Anmok beach, South Korea

    No full text
    Nearshore sandbar patterns can affect the hydrodynamics and, as a result, the beach morphodynamics in the nearshore zone. Hence, spatial and temporal variability in the sandbars can influence beach accretion and erosion. Understanding the variability of the sandbar system can therefore be crucial for informed coastal zone management. So far, the methods to study sandbar dynamics mainly include datasets of video observations or occasional bathymetric surveys. However, at most locations around the world, these types of data are not or only scarcely available. In this paper we present an alternative method to analyze long-term sandbar variability by means of freely available satellite imagery. These images are globally available since the 1980’s and, thus, have the potential to be applicable at any location in the world. Here, we will illustrate the methodology by means of a case study at Anmok beach at the South Korean East coast.Rivers, Ports, Waterways and Dredging EngineeringCoastal EngineeringEnvironmental Fluid Mechanic
    corecore