50 research outputs found
Deriving Models for Software Project Effort Estimation By Means of Genetic Programming
Software engineering, effort estimation, genetic programming, symbolic regression. This paper presents the application of a computational intelligence methodology in effort estimation for software projects. Namely, we apply a genetic programming model for symbolic regression; aiming to produce mathematical expressions that (1) are highly accurate and (2) can be used for estimating the development effort by revealing relationships between the projectâs features and the required work. We selected to investigate the effectiveness of this methodology into two software engineering domains. The system was proved able to generate models in the form of handy mathematical expressions that are more accurate than those found in literature.
An Architecture-Altering and Training Methodology for Neural Logic Networks: Application in the Banking Sector
Artificial neural networks have been universally acknowledged for their ability on constructing forecasting and classifying systems. Among their desirable features, it has always been the interpretation of their structure, aiming to provide further knowledge for the domain experts. A number of methodologies have been developed for this reason. One such paradigm is the neural logic networks concept. Neural logic networks have been especially designed in order to enable the interpretation of their structure into a number of simple logical rules and they can be seen as a network representation of a logical rule base. Although powerful by their definition in this context, neural logic networks have performed poorly when used in approaches that required training from data. Standard training methods, such as the back-propagation, require the networkâs synapse weight altering, which destroys the networkâs interpretability. The methodology in this paper overcomes these problems and proposes an architecture-altering technique, which enables the production of highly antagonistic solutions while preserving any weight-related information. The implementation involves genetic programming using a grammar-guided training approach, in order to provide arbitrarily large and connected neural logic networks. The methodology is tested in a problem from the banking sector with encouraging results
Predicting Defects in Software Using Grammar-Guided Genetic Programming
The knowledge of the software quality can allow an organization to allocate the needed resources for the code maintenance. Maintaining the software is considered as a high cost factor for most organizations. Consequently, there is need to assess software modules in respect of defects that will arise. Addressing the prediction of software defects by means of computational intelligence has only recently become evident. In this paper, we investigate the capability of the genetic programming approach for producing solution composed of decision rules. We applied the model into four software engineering databases of NASA. The overall performance of this system denotes its competitiveness as compared with past methodologies, and is shown capable of producing simple, highly accurate, tangible rules
Decision Making in the Medical Domain: Comparing the Effectiveness of GP-Generated Fuzzy Intelligent Structures
ABSTRACT: In this work, we examine the effectiveness of two intelligent models in medical domains. Namely, we apply grammar-guided genetic programming to produce fuzzy intelligent structures, such as fuzzy rule-based systems and fuzzy Petri nets, in medical data mining tasks. First, we use two context-free grammars to describe fuzzy rule-based systems and fuzzy Petri nets with genetic programming. Then, we apply cellular encoding in order to express the fuzzy Petri nets with arbitrary size and topology. The models are examined thoroughly in four real-world medical data sets. Results are presented in detail and the competitive advantages and drawbacks of the selected methodologies are discussed, in respect to the nature of each application domain. Conclusions are drawn on the effectiveness and efficiency of the presented approach
Evolving Takagi-Sugeno-Kang fuzzy systems using multi-population grammar guided genetic programming
This work proposes a novel approach for the automatic generation and tuning of complete Takagi-Sugeno-Kang fuzzy rule based systems. The examined system aims to explore the effects of a reduced search space for a genetic programming framework by means of grammar guidance that describes candidate structures of fuzzy rule based systems. The presented approach applies context-free grammars to generate individuals and evolve solutions through the search process of the algorithm. A multi-population approach is adopted for the genetic programming system, in order to increase the depth of the search process. Two candidate grammars are examined in one regression problem and one system identification task. Preliminary results are included and discussion proposes further research directions
Towards neural-symbolic integration: the evolutionary neural logic networks
This work presents the application of a new methodology for the production of neural logic networks into two real-world problems from the medical domain. Namely, we apply grammar guided genetic programming using cellular encoding for the representation of neural logic networks into population individuals. The application area is consisted of the diagnosis of diabetes and the diagnosis of the course of hepatitis patients. The system is proved able to generate arbitrarily connected and interpretable evolved solutions leading to potential knowledge extraction
Towards a Comprehensible and Accurate Credit Management Model: Application of four Computational Intelligence Methodologies
The paper presents methods for classification of applicants into different categories of credit risk using four different computational intelligence techniques. The selected methodologies involved in the rule-based categorization task are (1) feedforward neural networks trained with second order methods (2) inductive machine learning, (3) hierarchical decision trees produced by grammar-guided genetic programming and (4) fuzzy rule based systems produced by grammar-guided genetic programming. The data used are both numerical and linguistic in nature and they represent a real-world problem, that of deciding whether a loan should be granted or not, in respect to financial details of customers applying for that loan, to a specific private EU bank. We examine the proposed classification models with a sample of enterprises that applied for a loan, each of which is described by financial decision variables (ratios), and classified to one of the four predetermined classes. Attention is given to the comprehensibility and the ease of use for the acquired decision models. Results show that the application of the proposed methods can make the classification task easier and - in some cases - may minimize significantly the amount of required credit data. We consider that these methodologies may also give the chance for the extraction of a comprehensible credit management model or even the incorporation of a related decision support system in bankin