2 research outputs found

    Do Chinese Children With Math Difficulties Have a Deficit in Executive Functioning?

    No full text
    Several studies have shown that Executive Functioning (EF) is a unique predictor of mathematics performance. However, whether or not children with mathematics difficulties (MD) experience deficits in EF remains unclear. Thus, the purpose of this study was to examine if Chinese children with MD experience deficits in EF. We assessed 23 children with MD (9 girls, mean age = 10.40 years), 30 children with reading difficulties and MD (RDMD; 12 girls, mean age = 10.82 years), and 31 typically-developing (TD) peers (16 girls, mean age = 10.41 years) on measures of inhibition (Color-Word Stroop, Inhibition), shifting of attention (Planned Connections, Rapid Alternating Stimuli), working memory (Digit Span Backwards, Listening Span), processing speed (Visual Matching, Planned Search), reading (Character Recognition, Sentence Verification), and mathematics (Addition and Subtraction Fluency, Math Standard Achievement Test). The results of MANOVA analyses showed first that the performance of the MD children in all EF tasks was worse than their TD peers. Second, with the exception of the shifting tasks in which the MD children performed better than the RDMD children, the performance of the two groups was similar in all measures of working memory and inhibition. Finally, covarying for the effects of processing speed eliminated almost all differences between the TD and MD groups (the only exception was Listening Span) as well as the differences between the MD and RDMD groups in shifting of attention. Taken together, our findings suggest that although Chinese children with MD (with or without comorbid reading difficulties) experience significant deficits in all EF skills, most of their deficits can be accounted by lower-level deficits in processing speed

    Different Subcomponents of Executive Functioning Predict Different Growth Parameters in Mathematics: Evidence From a 4-Year Longitudinal Study With Chinese Children

    No full text
    Executive functioning (EF), an umbrella term used to represent cognitive skills engaged in goal-directed behaviors, has been found to be a unique predictor of mathematics performance. However, very few studies have examined how the three core EF subcomponents (inhibition, shifting, and working memory) predict the growth parameters (intercept and slope) in mathematics skills and even fewer studies have been conducted in a non-Western country. Thus, the purpose of this study was to examine how inhibition, shifting, and working memory predict the growth parameters in arithmetic accuracy and fluency in a group of Chinese children (n = 179) followed from Grade 2 (mean age = 97.89 months) to Grade 5 (mean age = 133.43 months). In Grade 2, children were assessed on measures of nonverbal IQ, number sense, speed of processing, inhibition, shifting, and working memory. In addition, in Grades 2–5, they were assessed on arithmetic accuracy and fluency. Results of structural equation modeling showed that nonverbal IQ, speed of processing, and number sense predicted the intercept in arithmetic accuracy, while working memory was the only EF subcomponent to predict the slope (rate of growth) in arithmetic accuracy. In turn, number sense, speed of processing, inhibition, and shifting were significant predictors of the intercept in arithmetic fluency. None of the EF subcomponents predicted the slope in arithmetic fluency. Our findings reinforce those of previous studies in North America and Europe showing that EF contributes to mathematics performance over and above other key predictors of mathematics, and suggest that different EF subcomponents may predict different growth parameters in mathematics
    corecore