3 research outputs found

    One-Dimensional Heterogeneous Reaction Model of a Drop-Tube Carbonator Reactor for Thermochemical Energy Storage Applications

    No full text
    Calcium looping systems constitute a promising candidate for thermochemical energy storage (TCES) applications, as evidenced by the constantly escalating scientific and industrial interest. However, the technologically feasible transition from the research scale towards industrial and highly competitive markets sets as a prerequisite the optimal design and operation of the process, especially corresponding reactors. The present study investigates for the first time the development of a detailed, one-dimensional mathematical model for the steady-state simulation of a novel drop-tube carbonator reactor as a core equipment unit in a concentrated solar power (CSP)-thermochemical energy storage integration plant. A validated kinetic mathematical model for a carbonation reaction (CaO(s) + CO2(g) → CaCO3(s)) focused on thermochemical energy storage conditions was developed and implemented for different material conditions. The fast gas–solid reaction kinetics conformed with the drop-tube reactor concept, as the latter is suitable for very fast reactions. Reaction kinetics were controlled by the reaction temperature. Varying state profiles were computed across the length of the reactor by using a mathematical model in which reactant conversions, the reaction rate, and the temperature and velocity of gas and solid phases provided crucial information on the carbonator’s performance, among other factors. Through process simulations, the model-based investigation approach revealed respective restrictions on a tailor-made reactor of 10 kWth, pointing out the necessity of detailed models as a provision for design and scale-up studies

    Vegetative Propagation and ISSR-Based Genetic Identification of Genotypes of Ilex aquifolium ‘Agrifoglio Commune’

    No full text
    The market demand for interesting varieties and cultivars of Ilex aquifolium necessitates the exploration and sustainable exploitation of plant individuals thriving in nature without human care. In this work, an effort was made to develop a simple and reliable protocol for vegetative propagation of I. aquifolium plants, with desirable-for-market characteristics, grown in a mountain area of Halkidiki, Greece, and at the same time to proceed with their genetic identification using molecular markers. From these plants, new plants were vegetatively produced which afterward were used as stock plants for providing the needed shoot cuttings for the experiments of rooting and leaves for their genetic analysis. Factors studied in formulating a propagation protocol included the season of cutting collection and the application of 0.2% 1-naphthaleneacetic acid (NAA), as well as the type of shoot cuttings (terminal, subterminal) and the application of auxin. It was found that application of NAA was crucial for rooting response and number of roots formed, whereas the season effect was not significant on rooting. Terminal cuttings treated with 0.2% NAA exhibited the highest rooting percentage (100%) and formed abundant roots (25.7) compared to subterminal ones. All rooted cuttings, after being potted and transferred to acclimatization greenhouse, were successfully hardened. In the spring of the next year, the produced plants blossomed abundantly and formed fruits (bright red berries) presenting their characteristic ornamental appearance that was maintained until Christmas. For the identification procedure, the genotypic profile of the stock plants was also investigated by inter-simple sequence repeat (ISSR) genetic analysis, revealing that they were genetically the same both among themselves and when compared with a certified I. aquifolium ‘Agrifoglio Commune’ individual, but they differed genetically from I. aquifolium ‘Argentea Marginata’ and I. aquifolium ‘Hellas’
    corecore