37 research outputs found

    Preamble-Based Channel Estimation for CP-OFDM and OFDM/OQAM Systems: A Comparative Study

    Full text link
    In this paper, preamble-based least squares (LS) channel estimation in OFDM systems of the QAM and offset QAM (OQAM) types is considered, in both the frequency and the time domains. The construction of optimal (in the mean squared error (MSE) sense) preambles is investigated, for both the cases of full (all tones carrying pilot symbols) and sparse (a subset of pilot tones, surrounded by nulls or data) preambles. The two OFDM systems are compared for the same transmit power, which, for cyclic prefix (CP) based OFDM/QAM, also includes the power spent for CP transmission. OFDM/OQAM, with a sparse preamble consisting of equipowered and equispaced pilots embedded in zeros, turns out to perform at least as well as CP-OFDM. Simulations results are presented that verify the analysis

    Block-Term Tensor Decomposition Model Selection and Computation: The Bayesian Way

    Full text link
    The so-called block-term decomposition (BTD) tensor model, especially in its rank-(Lr,Lr,1)(L_r,L_r,1) version, has been recently receiving increasing attention due to its enhanced ability of representing systems and signals that are composed of \emph{blocks} of rank higher than one, a scenario encountered in numerous and diverse applications. Uniqueness conditions and fitting methods have thus been thoroughly studied. Nevertheless, the challenging problem of estimating the BTD model structure, namely the number of block terms, RR, and their individual ranks, LrL_r, has only recently started to attract significant attention, mainly through regularization-based approaches which entail the need to tune the regularization parameter(s). In this work, we build on ideas of sparse Bayesian learning (SBL) and put forward a fully automated Bayesian approach. Through a suitably crafted multi-level \emph{hierarchical} probabilistic model, which gives rise to heavy-tailed prior distributions for the BTD factors, structured sparsity is \emph{jointly} imposed. Ranks are then estimated from the numbers of blocks (RR) and columns (LrL_r) of non-negligible energy. Approximate posterior inference is implemented, within the variational inference framework. The resulting iterative algorithm completely avoids hyperparameter tuning, which is a significant defect of regularization-based methods. Alternative probabilistic models are also explored and the connections with their regularization-based counterparts are brought to light with the aid of the associated maximum a-posteriori (MAP) estimators. We report simulation results with both synthetic and real-word data, which demonstrate the merits of the proposed method in terms of both rank estimation and model fitting as compared to state-of-the-art relevant methods
    corecore