2 research outputs found

    Biossensores microfluídicos baseados em micro-ondas: desde o design e implementação até a detecção em tempo real.

    No full text
    Observing biological matters is a crucial step in medical applications. Conventional techniques of cell study are very well established and effective. However, their detection method is based on fluorescence imaging techniques and staining that can be invasive to cells. Microwave dielectric spectroscopy is a novel and non-destructive analytical methodology to investigate biological matters without chemical binding or prior preparation and manipulation that eliminates the modification of the content. Furthermore, it provides the attractive advantage of real-time monitoring. This thesis aimed to develop microfluidic integrated microwave-based biosensors capable of measuring the dielectric properties of biological matters such as glucose and cell suspensions for cell characterization. After reviewing the current state of art analysis methods, we focused on developing high-sensitivity microwave biosensors to investigate biological matters. During the development, the microwave components, design structures, and fabrication processes were optimized to improve the performance of the biosensors regarding sensitivity and repeatability. First, the evolution of the biosensor performance was assessed by measuring the amplitude, phase, and frequency shifts at the absorption peak as a function of glucose concentrations in water solutions. Our sensing device distinguishes the variation of glucose concentrations around 5.2 GHz and is considered to be simple, easy to operate and highly sensitive (0.32 MHz/(mg/dL). Then the research followed by investigating more complex biological structures, and single living cells in culture medium were detected in their flow stream for cell quantification purposes. The changes in the S-parameter were measured over time at the resonant frequency to conduct the dielectric measurement of cell suspensions. The device proposed in the present work distinguished cells from the medium measuring a difference of approximately 23º in the phase of the transmitted signal. This biosensor could detect rapid flowing cells in their biological medium in real-time and hence can be used as an early diagnosis and monitoring tool for diseases.Observar materiais biológicos é um passo crucial em aplicações médicas. As técnicas convencionais de estudo celular são muito bem estabelecidas e eficazes. No entanto, os métodos de detecção são baseados em técnicas de imagem de fluorescência e coloração que podem ser invasivas para as células. A espectroscopia dielétrica em frequências de micro-ondas é uma metodologia analítica nova e não destrutiva para investigar matérias biológicas sem ligação química ou preparação e manipulação prévias que eliminam a modificação do conteúdo. Além disso, oferece a vantagem atraente de monitoramento em tempo real. Esta tese teve como objetivo desenvolver biossensores microfluídicos integrados baseados em micro-ondas capazes de medir as propriedades dielétricas de matérias biológicas como glicose e suspensões celulares para caracterização celular. Depois de revisar os métodos atuais de análise do estado da arte, focamos no desenvolvimento de biossensores de micro-ondas de alta sensibilidade para investigar questões biológicas. Durante o desenvolvimento, a concepção das estruturas dos circuitos em micro-ondas juntamente com a parte fluídica, bem como seus processos de fabricação foram otimizados para melhorar o desempenho dos biossensores em relação à sensibilidade e repetibilidade. Primeiro, a evolução do desempenho do biossensor foi avaliada medindo-se as mudanças de amplitude, fase e frequência nas frequências ressonantes em função das concentrações de glicose em soluções aquosas. O sensor proposto distingue variação de concentrações de glicose em torno de 5,2 GHz e é considerado simples, fácil de operar e bastante sensível (0,32 MHz/(mg/dL). Em seguida, a pesquisa seguiu investigando estruturas biológicas mais complexas, e células vivas foram individualmente detectadas em seu meio de cultura num fluxo em tempo real para fins de quantificação de células. As variações nos parâmetros de espalhamento foram medidas ao longo do tempo na frequência ressonante para conduzir a medição dielétrica de suspensões de células, resultando em sensores com alto desempenho sensibilidade e repetibilidade. O dispositivo proposto neste trabalho distinguiu as células de seu meio medindo uma diferença de aproximadamente 23º na fase do sinal transmitido. Este biossensor pode detectar as células em seu meio de cultura mesmo em fluxo rápido em tempo real e, portanto, pode ser usado como uma ferramenta de diagnóstico precoce e monitoramento de doenças

    A Microwave-Based Microfluidic Cell Detecting Biosensor for Biological Quantification Using the Metallic Nanowire-Filled Membrane Technology

    No full text
    A label-free, sensitive, miniaturized sensing device was developed for detecting living cells in their flow stream. The outstanding performance of this biosensor in distinguishing living cells in cell suspension was achieved by integrating microstrip stub resonator above a microfluidic structure using the metallic nanowire-filled membrane technology. The cell suspension flows in a microfluidic channel placed between the tip of the stub resonator and its ground plane as the substrate to take advantage of the uniform and concentrated field distribution. We studied the changes in relative permittivity due to the presence of a single living cell in the phase of the transmitted signal (S21). An average variation of as much as 22.85 ± 1.65° at ~11.1 GHz is observed for the living cell sensing using this optimized device. This biosensor could detect rapid flowing cells in their biological medium in real-time and hence, can be used as an early diagnosis and monitoring tool for diseases
    corecore