2 research outputs found

    Increase maize productivity and water use efficiency through application of potassium silicate under water stress

    No full text
    Abstract In Egypt, water shortage has become a key limiting factor for agriculture. Water-deficit stress causes different morphological, physiological, and biochemical impacts on plants. Two field experiments were carried out at Etay El-Baroud Station, El-Beheira Governorate, Agriculture Research Center (ARC), Egypt, to evaluate the effect of potassium silicate (K-silicate) of maize productivity and water use efficiency (WUE). A split-plot system in the four replications was used under three irrigation intervals during the 2017 and 2018 seasons. Whereas 10, 15, and 20 days irrigation intervals were allocated in main plots, while the three foliar application treatments of K-silicate (one spray at 40 days after sowing; two sprays at 40 and 60 days; and three sprays at 40, 60, and 80 days, and a control (water spray) were distributed in the subplots. All the treatments were distributed in 4 replicates. The results indicated that irrigation every 15 days gave the highest yield in both components and quality. The highly significant of (WUE) under irrigation every 20 days. Foliar spraying of K-silicate three times resulted in the highest yield. Even under water-deficit stress, irrigation every fifteen days combined with foliar application of K-silicate three times achieved the highest values of grain yield and its components. These results show that K-silicate treatment can increase WUE and produce high grain yield requiring less irrigation

    Effect of Mycorrhiza Fungi, Preceding Crops, Mineral and Bio Fertilizers on Maize Intercropping with Cowpea

    No full text
    One filed experiment was carried out to study the effect of Arbuscular Mycorrhiza fungi and three preceding winter crops, i.e., Meskawy cultivar of Egyptian clover berseem (Trifolium alexandrinum L.), Careem cultivar of sugar beet (Beta vulgaris) and Sakha 94 cultivar of wheat (Triticum aestivum) and five fertilizer combinations as treatments of NPK mineral and bio fertilizer which included 100% NPK (T1), 75% NPK + arbuscular mycorrhiza fungi (AMFs) (T2), 50% NPK + arbuscular mycorrhiza fungi (AMFs) (T3), 75% NPK + mycrobein (T4) and 50% NPK + mycrobein (T5) on maize intercropping with cowpea. The results showed that berseem was the best as a preceding crop and gave the highest values of maize and cowpea, followed by sugar beet as a preceding crop. While wheat recorded the lowest values. Fertilizer treatments had significant effect on all maize and cowpea traits. The treatment 75% NPK + arbuscular mycorrhiza fungi (AMFs) (T2) gave the highest values. Meanwhile, no significant differences were found between fertilizer treatments T1 (100% NPK mineral) and T2 (75% NPK + arbuscular mycorrhiza fungi (AMFs)) combination on all studied characters of maize. The interaction had a significant effect on most studied characters of maize and cowpea in the two growing seasons. The cultivation of the two components of intercropping after berseem with T2 fertilizer recorded the highest values. Mixing the third cut of cowpea with maize straw increased significantly the quality and digestibility of forge in both seasons. Planting after berseem and T2 fertilizer gave the highest values as yield advantageous for land equivalent ratio (LER) and relative crowding coefficient (K) which recorded 1.51 and 1.6 and 9.45 and 15.35 in the first and second seasons, respectively. The increases in net return were 3955.67 and 5062.50 L.E., which equates to a percentage of 34.25 and 44.71%, by cultivation intercropping component after berseem and T2 fertilizer treatment (75% NPK + arbuscular mycorrhiza fungi (AMFs)) compared with maize pure stand in first and second seasons, respectively
    corecore