38 research outputs found

    Adaptive homodyne phase discrimination and qubit measurement

    Full text link
    Fast and accurate measurement is a highly desirable, if not vital, feature of quantum computing architectures. In this work we investigate the usefulness of adaptive measurements in improving the speed and accuracy of qubit measurement. We examine a particular class of quantum computing architectures, ones based on qubits coupled to well controlled harmonic oscillator modes (reminiscent of cavity-QED), where adaptive schemes for measurement are particularly appropriate. In such architectures, qubit measurement is equivalent to phase discrimination for a mode of the electromagnetic field, and we examine adaptive techniques for doing this. In the final section we present a concrete example of applying adaptive measurement to the particularly well-developed circuit-QED architecture.Comment: 9 pages, 8 figures. Published versio

    Multidimensional cluster states using a single spin-photon interface coupled strongly to an intrinsic nuclear register

    Get PDF
    Photonic cluster states are a powerful resource for measurement-based quantum computing and loss-tolerant quantum communication. Proposals to generate multi-dimensional lattice cluster states have identified coupled spin-photon interfaces, spin-ancilla systems, and optical feedback mechanisms as potential schemes. Following these, we propose the generation of multi-dimensional lattice cluster states using a single, efficient spin-photon interface coupled strongly to a nuclear register. Our scheme makes use of the contact hyperfine interaction to enable universal quantum gates between the interface spin and a local nuclear register and funnels the resulting entanglement to photons via the spin-photon interface. Among several quantum emitters, we identify the silicon-29 vacancy centre in diamond, coupled to a nanophotonic structure, as possessing the right combination of optical quality and spin coherence for this scheme. We show numerically that using this system a 2x5-sized cluster state with a lower-bound fidelity of 0.5 and repetition rate of 65 kHz is achievable under currently realised experimental performances and with feasible technical overhead. Realistic gate improvements put 100-photon cluster states within experimental reach

    All-optical formation of coherent dark states of silicon-vacancy spins in diamond

    Get PDF
    Spin impurities in diamond can be versatile tools for a wide range of solid-state-based quantum technologies, but finding spin impurities which offer sufficient quality in both photonic and spin properties remains a challenge for this pursuit. The silicon-vacancy center has recently attracted a lot of interest due to its spin-accessible optical transitions and the quality of its optical spectrum. Complementing these properties, spin coherence is essential for the suitability of this center as a spin-photon quantum interface. Here, we report all-optical generation of coherent superpositions of spin states in the ground state of a negatively charged silicon-vacancy center using coherent population trapping. Our measurements reveal a characteristic spin coherence time, T2*, exceeding 250 nanoseconds at 4 K. We further investigate the role of phonon-mediated coupling between orbital states as a source of irreversible decoherence. Our results indicate the feasibility of all-optical coherent control of silicon-vacancy spins using ultrafast laser pulses.Comment: Additional data and analysis is available for download in PDF format at the publications section of http://www.amop.phy.cam.ac.uk/amop-m

    Charge-carrier complexes in monolayer semiconductors

    Full text link
    The photoluminescence (PL) spectra of monolayer (1L) semiconductors feature peaks ascribed to different charge-carrier complexes. We perform diffusion quantum Monte Carlo simulations of the binding energies of these complexes and examine their response to electric and magnetic fields. We focus on quintons (charged biexcitons), since they are the largest free charge-carrier complexes in transition-metal dichalcogenides (TMDs). We examine the accuracy of the Rytova-Keldysh interaction potential between charges by comparing the binding energies of charge-carrier complexes in 1L-TMDs with results obtained using ab initio\textit{ab initio} interaction potentials. Magnetic fields<8<8T change the binding energies (BEs) by0.2\sim0.2 meV,T1^{-1}, in agreement with experiments, with the BE variations of different complexes being very similar. Our results will help identify charge complexes in the PL spectra of 1L-semiconductor

    Ultrafast optical control of entanglement between two quantum dot spins

    Full text link
    The interaction between two quantum bits enables entanglement, the two-particle correlations that are at the heart of quantum information science. In semiconductor quantum dots much work has focused on demonstrating single spin qubit control using optical techniques. However, optical control of entanglement of two spin qubits remains a major challenge for scaling from a single qubit to a full-fledged quantum information platform. Here, we combine advances in vertically-stacked quantum dots with ultrafast laser techniques to achieve optical control of the entangled state of two electron spins. Each electron is in a separate InAs quantum dot, and the spins interact through tunneling, where the tunneling rate determines how rapidly entangling operations can be performed. The two-qubit gate speeds achieved here are over an order of magnitude faster than in other systems. These results demonstrate the viability and advantages of optically controlled quantum dot spins for multi-qubit systems.Comment: 24 pages, 5 figure

    Tunable Indistinguishable Photons From Remote Quantum Dots

    Full text link
    Single semiconductor quantum dots have been widely studied within devices that can apply an electric field. In the most common system, the low energy offset between the InGaAs quantum dot and the surrounding GaAs material limits the magnitude of field that can be applied to tens of kVcm^-1, before carriers tunnel out of the dot. The Stark shift experienced by the emission line is typically 1 meV. We report that by embedding the quantum dots in a quantum well heterostructure the vertical field that can be applied is increased by over an order of magnitude whilst preserving the narrow linewidths, high internal quantum efficiencies and familiar emission spectra. Individual dots can then be continuously tuned to the same energy allowing for two-photon interference between remote, independent, quantum dots
    corecore