1,864 research outputs found

    Constraints on light Dark Matter fermions from relic density consideration and Tsallis statistics

    Full text link
    The cold dark matter fermions with mass MeV scale, pair produced inside the supernova SN1987A core, can freely stream away from the supernovae and hence contributes to its energy loss rate. Similar type of DM fermions(having similar kind of coupling to the standard model photon), produced from some other sources earlier, could have contributed to the relic density of the Universe. Working in a theory with an effective dark matter-photon coupling (inversely proportional to the scale Λ\Lambda) in the formalism of Tsallis statistics, we find the dark matter contribution to the relic density and obtain a upper bound on Λ\Lambda using the experimental bound on the relic density for cold non-baryonic matter i.e. Ωh2=0.1186±0.0020\Omega h^2 = 0.1186 \pm 0.0020 . The upper bound obtained from the relic density is shown with the lower bound obtained from the Raffelt's criterion on the emissibity rate of the supernovae SN1987A energy loss ε˙(e+e−→χχ‾)≤1019 erg g−1s−1\dot{\varepsilon}(e^+ e^- \to \chi \overline{\chi}) \le 10^{19}~\rm{erg~g^{-1}s^{-1}} and the optical depth criteria on the free streaming of the dark matter fermion (produced inside the supernovae core). As the deformation parameter qq changes from 1.01.0 (undeformed scenario) to 1.11.1(deformed scenario), the relic density bound on Λ\Lambda is found to vary from ∼4.9×107 \sim 4.9 \times 10^7 TeV to 1.6×1081.6 \times 10^8 TeV for a fermion dark matter(χ\chi) of mass mχ=30 MeVm_\chi = 30~\rm{MeV}, which is almost 1010 times more than the lower bound obtained from the SN1987A energy loss rate and the optical depth criteria. \noindent {{\bf Keywords}: Dark matter, Relic density, Supernova cooling, Tsallis statistics, free-streaming, } }Comment: 18 Pages, 10 figure

    Bio-based composites from bagasse using carbohydrate enriched cross-bonding mechanism: A formaldehyde-free approach

    Get PDF
    In this study, cross-bonded self-binding and bone glue-bonded particleboards were manufactured from sugarcane (Saccharum officinarum L.) bagasse with different pre-treatments of particles. Six types of panels were manufactured from bagasse particles with and without bone glue. The physical, mechanical, and thermal properties of the panels were examined according to the standards. Fourier Transform Infrared (FTIR) spectroscopy and thermogravimetric analysis (TG) were performed to investigate the changes in the chemical bonds and thermal stability of the fabricated composites, respectively. It was found that cross-bonded bagasse self-binding (TC) and bone glue-bonded (T3) panels fabricated from non-boiled bagasse particles showed higher physical and mechanical properties compared to the other types of panels. Non-boiled bagasse particles with bone glue panels showed the highest mechanical properties, i.e., modulus of rupture (MOR = 26.22 MPa), modulus of elasticity (MOE = 4302 MPa), tensile strength = 8.35 MPa, and hardness = 1.72 MPa. TC and T3 panels also showed higher thermal stability compared to the other types of panels. A new peak at 3331-3334 cm-1 for the N-H stretching vibration in the FTIR analysis represents the presence of bone glue in the cross-bonded particleboards. Thus, this research advances the production of formaldehyde-free bagasse particleboard, introducing the cross-bonding technique and sustainable bone glue

    Production and characterisation of pine wood powders from a multi-blade shaft mill

    Get PDF
    Wood is an important raw material for the manufacture of consumer products and in achieving societal goals for greater sustainability. Wood powders are feedstock for many biorefining and conversion techniques, including chemical, enzymatic and thermochemical processes and for composite manufacture, 3D printing and wood pellet production. Size reduction, therefore, is a key operation in wood utilisation and powder characteristics, such as shape, particle size distribution and micromorphology play a role in powder quality and end-use application. While in a green state, the native chemical composition and structure of wood are preserved. Powders are commonly produced from wood chips using impact mills, which require pre-sized, pre-screened and pre-dried chips. These steps necessitate repeated handling, intermediate storage and contribute to dry matter losses, operation-based emissions and the degradation of the wood chemistry.This thesis investigated a new size reduction technology, known as the multi-blade shaft mill (MBSM). The MBSM performance was studied through the milling of Scots pine (Pinus sylvestris L.) wood using a designed series of experiments and through modelling with multi-linear regression (MLR) analyses. Light microscopy combined with histochemical techniques were used to investigate particle micromorphology and distribution of native extractives in powders. The aim was to evaluate the technical performance of the MBSM with relation to operational parameters, to characterise the produced powders and to evaluate the technology through comparison with impact milling.The results showed that the MBSM could effectively mill both green and dry wood. Produced powders showed distinct differences compared to those obtained using a hammer mill (HM). The specific milling energy of the MBSM was lowest for green wood and within the range of other established size reduction technologies. However, much narrower particle size distributions were observed in MBSM powders and they had significantly greater amounts of finer particles. Particles with high aspect ratio and sphericity were a characteristic of MBSM powders and this Production and characterisation of pine wood powders from a multi-blade shaft mill was true for wood milled above and below its fibre saturation point. MBSM powders from green wood showed evidence of higher specific surface area, larger pore volume and greater micropore diameter than those from HM powder. Preliminary microscopic examination suggested that cell walls in MBSM powders showed evidence of retaining their original native wood structure. Consequently, their extractive content appeared intact. This was in contrast to HM powder and it may reflect the differences between the two size reduction mechanisms. According to the produced MLR models, the results suggest that MBSM milling is more akin to a sawing process and opposite to that of impact-based mills

    Valorizing Assorted Logging Residues: Response Surface Methodology in the Extraction Optimization of a Green Norway Spruce Needle-Rich Fraction To Obtain Valuable Bioactive Compounds

    Get PDF
    During stemwood harvesting, substantial volumes of logging residues are produced as a side stream. Nevertheless, industrially feasible processing methods supporting their use for other than energy generation purposes are scarce. Thus, the present study focuses on biorefinery processing, employing response surface methodology to optimize the pressurized extraction of industrially assorted needle-rich spruce logging residues with four solvents. Eighteen experimental points, including eight center point replicates, were used to optimize the extraction temperature (40–135 °C) and time (10–70 min). The extraction optimization for water, water with Na2CO3 + NaHSO3 addition, and aqueous ethanol was performed using yield, total dissolved solids (TDS), antioxidant activity (FRAP, ORAC), antibacterial properties (E. coli, S. aureus), total phenolic content (TPC), condensed tannin content, and degree of polymerization. For limonene, evaluated responses were yield, TDS, antioxidant activity (CUPRAC, DPPH), and TPC. Desirability surfaces were created using the responses showing a coefficient of determination (R2) > 0.7, statistical significance (p ≤ 0.05), precision > 4, and statistically insignificant lack-of-fit (p > 0.1). The optimal extraction conditions were 125 °C and 68 min for aqueous ethanol, 120 °C and 10 min for water, 111 °C and 49 min for water with Na2CO3 + NaHSO3 addition, and 134 °C and 41 min for limonene. The outcomes contribute insights to industrial logging residue utilization for value-added purposes

    Physical and mechanical properties of Albizia procera glulam beam

    Get PDF
    This research was done to evaluate the feasibility of using Albizia procera for manufacturing glulam beams. The physical and mechanical properties of the A. procera glulam beam were evaluated, and these properties were compared to those of the solid A. procera solid timber. The A. procera glulam beam’s physical and mechanical properties were all superior to solid A. procera timber. In comparison to A. procera solid timber, A. procera glulam’s density, water absorption (WA), linear expansion (LE), and thickness swelling (TS) all improved by 11.1, 48.4, 44.6, and 37.0%, respectively. Again, compared to A. procera solid timber, the modulus of rupture (MOR) and modulus of elasticity (MOE) of the A. procera glulam beam increased by 27.6 and 29.2%, respectively. Additionally, the ASTM specifications were met by the A. procera glulam beam. As a result, based on the properties, it is possible to make A. procera glulam beams as structural timber products

    Cellulose-based bionanocomposites in energy storage applications-A review

    Get PDF
    The growing demand for energy and environmental issues are the main concern for the sustainable development of modern society. Replacing toxic and expensive materials with inexpensive and biodegradable biomaterials is the main challenge for researchers. Nanocomposites are of the utmost consideration for their application in energy storage devices because of their specific electrochemical properties. Cellulose-based bionanocomposites have added a new dimension to this field since these are developed from available renewable biomaterials. Studies on developing electrodes, separators, collectors, and electrolytes for the batteries have been conducted based on these composites rigorously. Electrodes and separators made of these composites for the supercapacitors have also been investigated. Researchers have used a wide range of micro- and nano-structural cellulose along with nanostructured inorganic materials to produce cellulose-based bionanocomposites for energy devices, i.e., supercapacitors and batteries. The presence of cellulosic materials enhances the loading capacity of active materials and uniform porous structure in the electrode matrix. Thus, it has shown improved electrochemical properties. Therefore, these can help to develop biodegradable, lightweight, malleable, and strong energy storage devices. In this review article, the manufacturing process, properties, applications, and possible opportunities of cellulose-based bionanocomposites in energy storage devices have been emphasized. Its challenges and opportunities have also been discussed
    • …
    corecore