2 research outputs found

    Wearable Textile Antennas with High Body-Antenna Isolation: Design, Fabrication, and Characterization Aspects

    Get PDF
    This chapter provides a brief overview of the types of wearable antennas with high body-antenna isolation. The main parameters and characteristics of wearable antennas and their design requirements are discussed. Next, procedures (passive and active) to test the performance of wearable antennas are presented. The electromagnetic properties of the commercially available textiles used as antenna substrates are investigated and summarized here, followed by a more detailed examination of their effects on the performance of wearable antennas with high body-antenna isolation. A trade-off between substrate electromagnetic properties and resonant frequency, bandwidth, radiation efficiency, and maximum gain is presented. Finally, a case study is presented with detailed analyses and investigations of the low-profile all-textile wearable antennas with high body-antenna isolation and low SAR. Their interaction with a semisolid homogeneous human body phantom is discussed. The simulations and experimental results from different (in free-space and on-body) scenarios are presented

    Fully Textile Dual-Band Logo Antenna for IoT Wearable Devices

    No full text
    In recent years, the interest in the Internet of Things (IoT) has been growing because this technology bridges the gap between the physical and virtual world, by connecting different objects and people through communication networks, in order to improve the quality of life. New IoT wearable devices require new types of antennas with unique shapes, made on unconventional substrates, which can be unobtrusively integrated into clothes and accessories. In this paper, we propose a fully textile dual-band logo antenna integrated with a reflector for application in IoT wearable devices. The proposed antenna’s radiating elements have been shaped to mimic the logo of South-West University “Neofit Rilski” for an unobtrusive integration in accessories. A reflector has been mounted on the opposite side of the textile substrate to reduce the radiation from the wearable antenna and improve its robustness against the loading effect from nearby objects. Two antenna prototypes were fabricated and tested in free space as well as on three different objects (human body, notebook, and laptop). Moreover, in the two frequency ranges of interest a radiation efficiency of 25–38% and 62–90% was achieved. Moreover, due to the reflector, the maximum local specific-absorption rate, which averaged over 10 g mass in the human-body phantom, was found to be equal to 0.5182 W/kg at 2.4 GHz and 0.16379 W/kg at 5.47 GHz. Additionally, the results from the performed measurement-campaign collecting received the signal-strength indicator and packet loss for an off-body scenario in real-world use, demonstrating that the backpack-integrated antenna prototype can form high-quality off-body communication channels
    corecore