16 research outputs found

    Under- and overreporting of energy in a group of candidates for CABG surgery and its association with some anthropometric and sociodemographic factors, Tehran, Iran

    Get PDF
    Bahareh Amirkalali1, Mehdi Najafi2, Asal Ataie-Jafari1, Saeed Hosseini1, Ramin Heshmat11Nutrition Department, The Endocrinology and Metabolism Research Centre (EMRC) of Tehran University of Medical Sciences (TUMS), Tehran, Iran; 2Tehran Heart Center, Tehran, IranIntroduction: Numerous studies have documented a high prevalence of misreporting energy intakes. This paper examines the prevalence of under- and overreporting of energy intake in a group of candidates for coronary artery bypass graft (CABG) surgery and its association with body mass index (BMI) and some sociodemographic factors.Subjects and methods: Dietary assessment (using a food frequency questionnaire) and demographic evaluation of 449 CABG surgery candidates was performed. Weight and height was also measured. McCrory equation was used to identify inaccurate records of energy intake. With this equation, reporting energy intake less than 78% and more than 122% of predicted energy expenditure was considered as under- and overreporting, respectively.Results: Less than half of the participants reported energy intakes within the plausible limits. There were more overreporters than underreporters in this sample. The only significant association between misreporting and related factors was seen in BMI groups. As BMI increased, the number of underreporters increased significantly. Expressed as a percentage of total energy, mean carbohydrate intake was significantly lower and mean fat and protein intake was significantly higher in underreporters compared to overreporters.Conclusion: The high prevalence of misreporting suggests more research to examine the characteristics of misreporters. Calibrating data with these characteristics can help to improve intake estimates.Keywords: underreporting, overreporting, energy intake, CABG candidate

    Preparation of nano-structured strontium carbonate from Dasht-e kavir celestite ore via mechanochemical method

    Get PDF
    Strontium carbonate (SrCO3) is one of the most important strontium compounds that have been used in a variety of technological and industrial applications. In the present investigation, nano-structured strontium carbonate was synthesized by mechano-chemical reaction of celestite ore (SrSO4) collected from Dasht-e kavir, Iran and sodium carbonate during high energy mechanical milling.The milling were performed for different durations of time up to 16 hours in a high-energy planetary ball mill with the rotational speed and ball to powder weight ratio of 300 rpm and 30, respectively. X-Ray diffraction (XRD), X-ray fluorescence spectrometer (XRF) and scanning electron microscope (SEM) were used to characterize the obtained samples. XRD results showed that at a Na2CO3:SrSO4 molar ratio of 1.05:1, mechano-chemical reaction started after 1 hour of milling. Although the longer milling times gives a more conversion of SrSO4 to SrCO3 but it has not been completed even after 16 hours of milling. However, by increasing the molar ratio of Na2CO3:SrSO4 to 1.25:1, the SrCO3 formation was completed after 2 hours. The results also showed that the mean crystallites sizes of produced nano-powder were approximately 32 nm. XRF result indicated that the final product was obtained with a purity of 95 wt.%. SEM studies confirmed the formation of SrCO3 nano-powder with a mean particle size of 80 nm

    Subcutaneous Injection of Allogeneic Adipose-Derived Mesenchymal Stromal Cells in Psoriasis Plaques: Clinical Trial Phase I

    Get PDF
    Objective: Mesenchymal stromal cells (MSCs) play immunomodulatory role in various autoimmune diseases. Previouspre-clinical and clinical studies have shown that MSCs could be a therapeutic modality for psoriasis. However, themechanisms of treatment and its possible side effects are under investigation. In this study, the safety and probableefficacy of injecting allogeneic adipose-derived mesenchymal stromal cells (ADSCs) in psoriatic patients were evaluated.Materials and Methods: In this phase I clinical study with six months of follow-up, total number of 1×106 or 3×106cells/cm2 of ADSCs were injected into the subcutaneous tissue of each plaque as a single dose in three males and twofemales (3M/2F) with a mean age of 32.8 ± 8.18. The primary outcome was safety. Changes in clinical and histologicalindexes, the number of B and T lymphocytes in local and peripheral blood, and serum levels of inflammatory cytokineswere assessed. Paired t test was used to compare variables at two time points (baseline and six months after injection)and repeated measures ANOVA test was utilized for variables at three time points in follow-up visits.Results: No major adverse effects such as burning, pain, itching, or any systemic side effects were observed followingADSCs injection, and the lesions showed slight to considerable improvement after injection. The mRNA expressionlevels of pro-inflammatory factors were reduced in the dermis of the patients after injection. The increased expressionlevel of Foxp3 transcription factor in the patient blood samples suggested modulation of inflammation after ADMSCsadministration. Six months after the intervention, no major side effects were reported, but skin thickness, erythema, andscaling of the plaques, as well as the PASI score, were decreased in majority of patients.Conclusion: Our study suggested that ADSC injection could be considered as a safe and effective therapeuticapproach for psoriatic plaques (registration number: IRCT20080728001031N24)

    Detection of Melanoma Skin Cancer by Elastic Scattering Spectra: A Proposed Classification Method

    No full text
    Introduction: There is a strong need for developing clinical technologies and instruments for prompt tissue assessment in a variety of oncological applications as smart methods. Elastic scattering spectroscopy (ESS) is a real-time, noninvasive, point-measurement, optical diagnostic technique for malignancy detection through changes at cellular and subcellular levels, especially important in early diagnosis of invasive skin cancer, melanoma. In fact, this preliminary study was conducted to provide a classification method for analyzing the ESS spectra. Elastic scattering spectra related to the normal skin and melanoma lesions, which were already confirmed pathologically, were provided as input from an ESS database. Materials and Methods: A program was developed in MATLAB based on singular value decomposition and K-means algorithm for classification. Results: Accuracy and sensitivity of the proposed classifying method for normal and melanoma spectra were 87.5% and 80%, respectively. Conclusion: This method can be helpful for classification of melanoma and normal spectra. However, a large body of data and modifications are required to achieve better sensitivity for clinical applications

    CoFe2O4/Fe magnetic nanocomposite: exchange coupling behavior and microwave absorbing property

    No full text
    In this research, a CoFe2O4/Fe magnetic nanocomposite was successfully produced through mechanical alloying. The effects of different Fe concentrations (10, 30, and 50 wt %) and milling time (1, 3, 5, and 10 h) on the characteristics of the nanocomposite samples were systematically investigated. Single-phase CoFe2O4 nanoparticles were produced with a mean particle size of 60 nm and a saturation magnetization of 76 emu/g. The FESEM and HRTEM images confirm the heterostructure and particle size reduction of the CoFe2O4/30 wt% Fe nanocomposite after milling for 5 h. Also, the STEM-EDX signals of this nanocomposite sample revealed a uniform elemental distribution after 5 h of milling. The single-phase-like hysteresis loop and switching field distribution curves of 3-h milled nanocomposites containing 10 and 30 wt% Fe, revealed exchange coupling in the nanocomposite samples. This result was confirmed by simultaneous enhancements of the maximum energy product (BH)max and the remnant magnetization/saturation magnetization ratio (Mr/Ms). The (BH)max value of the CoFe2O4/10 wt% Fe nanocomposite after 3 h milling was 2.7 MGOe, which was about 1.8 times higher than that of single-phase CoFe2O4 nanoparticles. An epoxy-based nanocomposite fabricated with CoFe2O4/Fe segments exhibited magnetic losses in the X-band frequency range. The maximum reflection loss (−27 dB at 11.2 GHz frequency) for the CoFe2O4/30 wt% Fe nanocomposite milled for 10 h was 8 times greater than that of pure CoFe2O4 nanoparticles
    corecore