1,375 research outputs found

    Strong Electron-Hole Exchange in Coherently Coupled Quantum Dots

    Full text link
    We have investigated few-body states in vertically stacked quantum dots. Due to small inter-dot tunneling rate, the coupling in our system is in a previously unexplored regime where electron-hole exchange is the dominant spin interaction. By tuning the gate bias, we are able to turn this coupling off and study a complementary regime where total electron spin is a good quantum number. The use of differential transmission allows us to obtain unambiguous signatures of the interplay between electron and hole spin interactions. Small tunnel coupling also enables us to demonstrate all-optical charge sensing, where conditional exciton energy shift in one dot identifies the charging state of the coupled partner.Comment: 10 pages, 3 figure

    Enhancement of electron spin coherence by optical preparation of nuclear spins

    Full text link
    We study a large ensemble of nuclear spins interacting with a single electron spin in a quantum dot under optical excitation and photon detection. When a pair of applied laser fields satisfy two-photon resonance between the two ground electronic spin states, detection of light scattering from the intermediate exciton state acts as a weak quantum measurement of the effective magnetic (Overhauser) field due to the nuclear spins. If the spin were driven into a coherent population trapping state where no light scattering takes place, then the nuclear state would be projected into an eigenstate of the Overhauser field operator and electron decoherence due to nuclear spins would be suppressed: we show that this limit can be approached by adapting the laser frequencies when a photon is detected. We use a Lindblad equation to describe the time evolution of the driven system under photon emission and detection. Numerically, we find an increase of the electron coherence time from 5 ns to 500 ns after a preparation time of 10 microseconds.Comment: 5 pages, 4 figure

    Charge radii of the nucleon from its flavor dependent Dirac form factors

    Full text link
    We have determined the proton and the neutron charge radii from a global analysis of the proton and the neutron elastic form factors, after first performing a flavor decomposition of these form factors under charge symmetry in the light cone frame formulation. We then extracted the transverse mean-square radii of the flavor dependent quark distributions. In turn, these are related in a model-independent way to the proton and neutron charge radii but allow us to take into account motion effects of the recoiling nucleon for data at finite but high momentum transfer. In the proton case we find ⟨rp⟩=0.852±0.002(stat.)±0.009(syst.) (fm)\langle r_p \rangle = 0.852 \pm0.002_{\rm (stat.)} \pm0.009_{\rm (syst.)}~({\rm fm}), consistent with the proton charge radius obtained from muonic hydrogen spectroscopy \cite{pohl:2010,antog2013}. The current method improves on the precision of the ⟨rp⟩\langle r_p \rangle extraction based on the form factor measurements. Furthermore, we find no discrepancy in the ⟨rp⟩\langle r_p \rangle determination among the different electron scattering measurements, all of which, utilizing the current method of extraction, result in a value that is consistent with the smallest ⟨rp⟩\langle r_p \rangle extraction from the electron scattering measurements \cite{Xiong:2019umf}. Concerning the neutron case, past results relied solely on the neutron-electron scattering length measurements, which suffer from an underestimation of underlying systematic uncertainties inherent to the extraction technique. Utilizing the present method we have performed the first extraction of the neutron charge radius based on nucleon form factor data, and we find ⟨rn2⟩=−0.122±0.004(stat.)±0.010(syst.) (fm2)\langle r_n^2 \rangle = -0.122 \pm0.004_{\rm (stat.)} \pm0.010_{\rm (syst.)}~({\rm fm}^2)

    Search for Short-Term Periodicities in the Sun's Surface Rotation: A Revisit

    Full text link
    The power spectral analyses of the Sun's surface equatorial rotation rate determined from the Mt. Wilson daily Doppler velocity measurements during the period 3 December 1985 to 5 March 2007 suggests the existence of 7.6 year, 2.8 year, 1.47 year, 245 day, 182 day and 158 day periodicities in the surface equatorial rotation rate during the period before 1996. However, there is no variation of any kind in the more accurately measured data during the period after 1995. That is, the aforementioned periodicities in the data during the period before the year 1996 may be artifacts of the uncertainties of those data due to the frequent changes in the instrumentation of the Mt. Wilson spectrograph. On the other hand, the temporal behavior of most of the activity phenomena during cycles 22 (1986-1996) and 23 (after 1997) is considerably different. Therefore, the presence of the aforementioned short-term periodicities during the last cycle and absence of them in the current cycle may, in principle, be real temporal behavior of the solar rotation during these cycles.Comment: 11 pages, 6 figures, accepted for publication in Solar Physic

    Quantum Computation with Quantum Dots and Terahertz Cavity Quantum Electrodynamics

    Get PDF
    A quantum computer is proposed in which information is stored in the two lowest electronic states of doped quantum dots (QDs). Many QDs are located in a microcavity. A pair of gates controls the energy levels in each QD. A Controlled Not (CNOT) operation involving any pair of QDs can be effected by a sequence of gate-voltage pulses which tune the QD energy levels into resonance with frequencies of the cavity or a laser. The duration of a CNOT operation is estimated to be much shorter than the time for an electron to decohere by emitting an acoustic phonon.Comment: Revtex 6 pages, 3 postscript figures, minor typos correcte
    • …
    corecore