40 research outputs found

    Investigation of freeze-lining formation in metallurgical systems

    No full text

    Further experimental investigation of freeze-lining/bath interface at steady-state conditions

    No full text
    In design of the freeze-lining deposits in high-temperature reaction systems, it has been widely assumed that the interface temperature between the deposit and bath at steady-state conditions, that is, when the deposit interface velocity is zero, is the liquidus of the bulk bath material. Current work provides conclusive evidence that the interface temperature can be lower than that of the bulk liquidus. The observations are consistent with a mechanism involving the nucleation and growth of solids on detached crystals in a subliquidus layer as this fluid material moves toward the stagnant deposit interface and the dissolution of these detached crystals as they are transported away from the interface by turbulent eddies. The temperature and position of the stable deposit/liquid interface are determined by the balance between the extent of crystallization on the detached crystals and mass transfer across the subliquidus layer from the bulk bath. A conceptual framework is developed to analyze the factors influencing the steady-state deposit/interface temperature and deposit thickness in chemical systems operating in a positive temperature gradient. The framework can be used to explain the experimental observations in a diverse range of chemical systems and conditions, including high-temperature melts and aqueous solutions, and to explain why the interface temperature under these conditions can be between Tliquidus and Tsolidus

    From phase equilibrium and thermodynamic modeling to freeze linings - the development of techniques for the analysis of complex slag systems

    No full text
    Modern analytical tools, such as electron probe X-ray microanalysis (EPMA), are used in experimental characterization of phase equilibria and microstructures of complex slags. Integrated thermodynamic computer packages, such as FactSage, are used to provide more accurate descriptions of complex slag systems. These advanced methodologies have been applied to characterize dynamic steady state freeze linings in slag systems using submerged cold finger probes at controlled laboratory conditions, establishing the effects of bath chemistry, temperature, heat extraction rate and bulk fluid flow. It has been found that stationary freeze lining deposit interface temperatures at steady state conditions can be lower than the bulk slag liquidus temperature, and that stable operation below the liquidus is possible. A conceptual framework has been developed to explain the phenomenon and the range of interface temperatures that can be obtained in dynamic steady state conditions. These findings have important implications for the design of freeze linings and possible improvements to high-temperature metallurgical operations

    Investigation of freeze-linings in aluminum production cells

    No full text
    The molten cryolite bath creates chemically a very aggressive environment in the Hall-Héroult cell, and thus, the formation of a protective solid layer (freeze-lining) on the cell wall is essential for the operation of the present cell designs. To provide further information on the formation of the freeze-lining deposit in this system, laboratory-based studies were undertaken using an air-cooled probe technique The effects of process conditions, i.e., time, bath agitation, and superheat on the microstructures, morphologies of the phases, and the phase assemblages adjacent to the deposit/bath interface were investigated. A detailed microstructural analysis of the steady-state deposits shows that a dense sealing primary-phase layer of cryolite solid solution was formed at the interface of the bath deposit for the process conditions examined. The formation of sealing primary-phase layer at the bath/deposit interface explicitly indicates that the deposit/liquid bath interface temperature is equal to that of the liquidus of the bulk bath. The experimentally investigated liquidus temperature and subliquidus equilibria differ significantly from those previously reported

    The Effect of CaO on Gas/Slag/Matte/Tridymite Equilibria in Fayalite-Based Copper Smelting Slags at 1473 K (1200 °C) and P(SO2) = 0.25 Atm

    No full text
    Fundamental experimental studies have been undertaken to determine the effect of CaO on the equilibria between the gas phase (CO/CO/SO/Ar) and slag/matte/tridymite phases in the Cu-Fe-O-S-Si-Ca system at 1473 K (1200 °C) and P(SO) = 0.25 atm. The experimental methodology developed in the Pyrometallurgy Innovation Centre was used. New experimental data have been obtained for the four-phase equilibria system for fixed concentrations of CaO (up to 4 wt pct) in the slag phase as a function of copper concentration in matte, including the concentrations of dissolved sulfur and copper in slag, and Fe/SiO ratios in slag at tridymite saturation. The new data provided in the present study are of direct relevance to the pyrometallurgical processing of copper and will be used as an input to optimize the thermodynamic database for the copper-containing multi-component multi-phase system

    Investigation of freeze-linings in copper-containing slag systems: Part I. Preliminary experiments

    No full text
    Slag freeze-linings are increasingly used in industrial pyrometallurgical processes to insure that furnace integrity is maintained in aggressive high-temperature environments. Most previous studies of freeze-linings have analyzed the formation of slag deposits based solely on heat-transfer models. The focus of the present research is to determine the impact of slag chemistry and local process conditions on the microstructures, thickness, stability, and heat-transfer characteristics of the frozen deposit at steady-state conditions. The formation of the freeze-linings is studied under controlled laboratory conditions using an air-cooled "cold-finger" technique for Cu-Fe-Si-Al-O slag at equilibrium with metallic copper relevant to the industrial copper smelting processes. The phase assemblages and microstructures of the deposits formed in the cold-finger experiments differ significantly from those expected from phase equilibrium considerations. The freeze-lining deposits have been found, in general, to consist of several layers. Starting from the cold finger, these layers consist of glass; glass with microcrystalline precipitates; closed crystalline layer; and open crystalline layer. Even at steady-state conditions, there was no primary phase sealing layer of delafossite [CuO · (Al, Fe)O] present at the deposit/liquid interface - these observations differ markedly from those expected from phase equilibrium considerations. The findings have significant practical implications, and potential for the improved design and operation of industrial metallurgical furnaces

    Understanding slag freeze linings

    No full text
    Slag freeze linings, the formation of protective deposit layers on the inner walls of furnaces and reactors, are increasingly used in industrial pyrometallurgical processes to ensure that furnace integrity is maintained in these aggressive, high-temperature environments. Most previous studies of freeze-linings have analyzed the formation of slag deposits based solely on heat transfer considerations. These thermal models have assumed that the interface between the stationary frozen layer and the agitated molten bath at steady-state deposit thickness consists of the primary phase, which stays in contact with the bulk liquid at the liquidus temperature. Recent experimental studies, however, have clearly demonstrated that the temperature of the deposit/liquid bath interface can be lower than the liquidus temperature of the bulk liquid. A conceptual framework has been proposed to explain the observations and the factors influencing the microstructure and the temperature of the interface at steady-state conditions. The observations are consistent with a dynamic steady state that is a balance between (I) the rate of nucleation and growth of solids on detached crystals in a subliquidus layer as this fluid material moves toward the stagnant deposit interface and (II) the dissolution of these detached crystals as they are transported away from the interface by turbulent eddies. It is argued that the assumption that the interface temperature is the liquidus of the bulk material represents only a limiting condition, and that the interface temperature can be between T and T depending on the process conditions and bath chemistry. These findings have implications for the modeling approach and boundary conditions required to accurately describe these systems. They also indicate the opportunity to integrate considerations of heat and mass flows with the selection of melt chemistries in the design of future high temperature industrial reactors

    The influence of temperature on the gas/slag/matte/spinel equilibria in the Cu-Fe-O-S-Si system at fixed P(SO2)=0.25 atm

    No full text
    Equilibria between gas/slag/matte/spinel phases in the Cu-Fe-O-S-Si system have been experimentally studied at 1523 K (1250 degrees C), P(SO2) = 0.25 atm, and a range of oxygen partial pressures. The experimental technique involved high temperature equilibration using spinel substrates in controlled gas atmospheres (CO/CO2/SO2/Ar), rapid quenching of the equilibrated phases, and direct measurement of phase compositions using Electron Probe X-ray Microanalysis. The influence of temperature on the gas/slag/matte/spinel equilibria has been analyzed. Comparisons with previous studies on the gas/slag/matte/tridymite equilibria and the most recent thermodynamic database have been provided. This is the first systematic study on the influence of temperature on the gas/slag/matte/spinel equilibria in the Cu-Fe-O-S-Si system at P(SO2) = 0.25 atm

    Experimental investigation of gas/slag/matte/tridymite equilibria in the Cu-Fe-O-S-Si system in controlled atmospheres: Development of technique

    No full text
    The majority of primary pyrometallurgical copper making processes involve the formation of two immiscible liquid phases, i.e., matte product and the slag phase. There are significant gaps and discrepancies in the phase equilibria data of the slag and the matte systems due to issues and difficulties in performing the experiments and phase analysis. The present study aims to develop an improved experimental methodology for accurate characterisation of gas/slag/matte/tridymite equilibria in the Cu-Fe-O-S-Si system under controlled atmospheres. The experiments involve high-temperature equilibration of synthetic mixtures on silica substrates in CO/CO/SO/Ar atmospheres, rapid quenching of samples into water, and direct composition measurement of the equilibrium phases using Electron Probe X-ray Microanalysis (EPMA). A four-point-test procedure was applied to ensure the achievement of equilibrium, which included the following: (i) investigation of equilibration as a function of time, (ii) assessment of phase homogeneity, (iii) confirmation of equilibrium by approaching from different starting conditions, and (iv) systematic analysis of the reactions specific to the system. An iterative improved experimental methodology was developed using this four-point-test approach to characterize the complex multi-component, multi-phase equilibria with high accuracy and precision. The present study is a part of a broader overall research program on the characterisation of the multi-component (Cu-Fe-O-S-Si-Al-Ca-Mg), multi-phase (gas/slag/matte/metal/solids) systems with minor elements (Pb, Zn, As, Bi, Sn, Sb, Ag, and Au)
    corecore