156 research outputs found
Forced Population Movements as a Current Ethical Dilemma and the Possibilities of Collective Action
The spirit of our times has been increasingly determined by refugee crisis and asylum institutions. If onecould read the ongoing economic, political, environmental and demographic crises correctly, a refugeecrisis would not have been treated as unexpected, unfortunate singular coincidence. A comprehensive,non-proscriptive approach with a collective, multilevel engagement must urgently be generated by theinternational community to create an all-encompassing legal consciousness.This paper seeks to delve into the question of the current refugee crisis from an historical point of viewand recount the progress of the International refugee regime. In doing that it will also discuss the possi-bility of the launch of a collective action by the International community in the present. Refugee historyis not progressive; it has not linearly proceeded towards comprehensive solutions. There are ruptures,retreats, changes of attitude -from positive to negative, from negative to inaction. Despite the growingglobal governance with the participation of International and non-governmental organizations, statesare still the major actors in the refugee regime. The dominant role of the states in managing the refugeecrisis creates an ethical dilemma, as is the case in every normative context state is involved. This paper,therefore, will finally assess the ethical dilemma unveiled by the recent EU-Turkey refugee deal
North-South Distribution of Solar Flares during Cycle 23
In this paper, we investigate the spatial distribution of solar flares in the
northern and southern hemisphere of the Sun that occurred during the period
1996 to 2003. This period of investigation includes the ascending phase, the
maximum and part of descending phase of solar cycle 23. It is revealed that the
flare activity during this cycle is low compared to previous solar cycle,
indicating the violation of Gnevyshev-Ohl rule. The distribution of flares with
respect to heliographic latitudes shows a significant asymmetry between
northern and southern hemisphere which is maximum during the minimum phase of
the solar cycle. The present study indicates that the activity dominates the
northern hemisphere in general during the rising phase of the cycle
(1997-2000). The dominance of northern hemisphere is shifted towards the
southern hemisphere after the solar maximum in 2000 and remained there in the
successive years. Although the annual variations in the asymmetry time series
during cycle 23 are quite different from cycle 22, they are comparable to cycle
21.Comment: 6 pages, 2 figures, 1 table; Accepted for the publication in the
proceedings of international solar workshop held at ARIES, Nainital, India on
"Transient Phenomena on the Sun and Interplanetary Medium" in a special issue
of "Journal of Astrophysics and Astronomy (JAA)
Study of Distribution and Asymmetry of Solar Active Prominences During Solar Cycle 23
In this paper we present the results of a study of the spatial distribution
and asymmetry of solar active prominences (SAP) for the period 1996-2007 (solar
cycle 23). For more meaningful statistical analysis we have analysed the
distribution and asymmetry of SAP in two subdivisions viz. Group1 (ADF, APR,
DSF, CRN, CAP) and Group2 (AFS, ASR, BSD, BSL, DSD, SPY, LPS). The north-south
(N-S) latitudinal distribution shows that the SAP events are most prolific in
the 21-30degree slice in the northern and southern hemispheres and east-west
(E-W) longitudinal distribution study shows that the SAP events are most
prolific (best visible) in the 81-90degree slice in the eastern and western
hemispheres. It has been found that the SAP activity during this cycle is low
compared to previous solar cycles. The present study indicates that during the
rising phase of the cycle the number of SAP events were roughly equal on the
north and south hemispheres. However, activity on the southern hemisphere has
been dominant since 1999. Our statistical study shows that the N-S asymmetry is
more significant then the E-W asymmetry.Comment: 21 pages 5 figures; Published online; 02 October, 2009; Solar Physics
Journa
Light-ion production in the interaction of 96 MeV neutrons with oxygen
Double-differential cross sections for light-ion (p, d, t, He-3 and alpha)
production in oxygen, induced by 96 MeV neutrons are reported. Energy spectra
are measured at eight laboratory angles from 20 degrees to 160 degrees in steps
of 20 degrees. Procedures for data taking and data reduction are presented.
Deduced energy-differential and production cross sections are reported.
Experimental cross sections are compared to theoretical reaction model
calculations and experimental data at lower neutron energies in the literature.
The measured proton data agree reasonably well with the results of the model
calculations, whereas the agreement for the other particles is less convincing.
The measured production cross sections for protons, deuterons, tritons and
alpha particles support the trends suggested by data at lower energies.Comment: 21 pages, 13 figures, submitted to Phys. Rev.
Identification and rejection of scattered neutrons in AGATA
Gamma rays and neutrons, emitted following spontaneous fission of 252Cf, were
measured in an AGATA experiment performed at INFN Laboratori Nazionali di
Legnaro in Italy. The setup consisted of four AGATA triple cluster detectors
(12 36-fold segmented high-purity germanium crystals), placed at a distance of
50 cm from the source, and 16 HELENA BaF2 detectors. The aim of the experiment
was to study the interaction of neutrons in the segmented high-purity germanium
detectors of AGATA and to investigate the possibility to discriminate neutrons
and gamma rays with the gamma-ray tracking technique. The BaF2 detectors were
used for a time-of-flight measurement, which gave an independent discrimination
of neutrons and gamma rays and which was used to optimise the gamma-ray
tracking-based neutron rejection methods. It was found that standard gamma-ray
tracking, without any additional neutron rejection features, eliminates
effectively most of the interaction points due to recoiling Ge nuclei after
elastic scattering of neutrons. Standard tracking rejects also a significant
amount of the events due to inelastic scattering of neutrons in the germanium
crystals. Further enhancements of the neutron rejection was obtained by setting
conditions on the following quantities, which were evaluated for each event by
the tracking algorithm: energy of the first and second interaction point,
difference in the calculated incoming direction of the gamma ray,
figure-of-merit value. The experimental results of tracking with neutron
rejection agree rather well with Geant4 simulations
Discrimination of gamma rays due to inelastic neutron scattering in AGATA
Possibilities of discriminating neutrons and gamma rays in the AGATA
gamma-ray tracking spectrometer have been investigated with the aim of reducing
the background due to inelastic scattering of neutrons in the high-purity
germanium crystals. This background may become a serious problem especially in
experiments with neutron-rich radioactive ion beams. Simulations using the
Geant4 toolkit and a tracking program based on the forward tracking algorithm
were carried out by emitting neutrons and gamma rays from the center of AGATA.
Three different methods were developed and tested in order to find
'fingerprints' of the neutron interaction points in the detectors. In a
simulation with simultaneous emission of six neutrons with energies in the
range 1-5 MeV and ten gamma rays with energies between 150 and 1450 keV, the
peak-to-background ratio at a gamma-ray energy of 1.0 MeV was improved by a
factor of 2.4 after neutron rejection with a reduction of the photopeak
efficiency at 1.0 MeV of only a factor of 1.25.Comment: Accepted for publication in Nuclear Instruments and Methods in
Physics Research, A, 26 May 2009; 13 pages, 5 tables, 12 figure
Nucleon-induced reactions at intermediate energies: New data at 96 MeV and theoretical status
Double-differential cross sections for light charged particle production (up
to A=4) were measured in 96 MeV neutron-induced reactions, at TSL laboratory
cyclotron in Uppsala (Sweden). Measurements for three targets, Fe, Pb, and U,
were performed using two independent devices, SCANDAL and MEDLEY. The data were
recorded with low energy thresholds and for a wide angular range (20-160
degrees). The normalization procedure used to extract the cross sections is
based on the np elastic scattering reaction that we measured and for which we
present experimental results. A good control of the systematic uncertainties
affecting the results is achieved. Calculations using the exciton model are
reported. Two different theoretical approches proposed to improve its
predictive power regarding the complex particle emission are tested. The
capabilities of each approach is illustrated by comparison with the 96 MeV data
that we measured, and with other experimental results available in the
literature.Comment: 21 pages, 28 figure
Compilation of Giant Electric Dipole Resonances Built on Excited States
Giant Electric Dipole Resonance (GDR) parameters for gamma decay to excited
states with finite spin and temperature are compiled. Over 100 original works
have been reviewed and from some 70 of which more than 300 parameter sets of
hot GDR parameters for different isotopes, excitation energies, and spin
regions have been extracted. All parameter sets have been brought onto a common
footing by calculating the equivalent Lorentzian parameters. The current
compilation is complementary to an earlier compilation by Samuel S. Dietrich
and Barry L. Berman (At. Data Nucl. Data Tables 38(1988)199-338) on
ground-state photo-neutron and photo-absorption cross sections and their
Lorentzian parameters. A comparison of the two may help shed light on the
evolution of GDR parameters with temperature and spin. The present compilation
is current as of January 2006.Comment: 31 pages including 1 tabl
Response of AGATA Segmented HPGe Detectors to Gamma Rays up to 15.1 MeV
The response of AGATA segmented HPGe detectors to gamma rays in the energy
range 2-15 MeV was measured. The 15.1 MeV gamma rays were produced using the
reaction d(11B,ng)12C at Ebeam = 19.1 MeV, while gamma-rays between 2 to 9 MeV
were produced using an Am-Be-Fe radioactive source. The energy resolution and
linearity were studied and the energy-to-pulse-height conversion resulted to be
linear within 0.05%. Experimental interaction multiplicity distributions are
discussed and compared with the results of Geant4 simulations. It is shown that
the application of gamma-ray tracking allows a suppression of background
radiation following neutron capture by Ge nuclei. Finally the Doppler
correction for the 15.1 MeV gamma line, performed using the position
information extracted with Pulse-shape Analysis, is discussed.Comment: 10 pages, 11 figure
- …