54 research outputs found

    Penetration of Andreev bound states into the ferromagnet in a SrRuO3_{3}/(110)YBa2_2Cu3_3O7−δ_{7-\delta} bilayer: a scanning tunneling spectroscopy study

    Full text link
    Scanning tunneling spectroscopy of thin epitaxial SrRuO3/(110)YBa2Cu3O7−δSrRuO_{3}/(110)YBa_2Cu_3O_{7-\delta} ferromagnet/superconductor bilayers, reveal a clear penetration of the Andreev bound states into the ferromagnetic layer. The penetration is manifested in the density of states of the ferromagnet as a split zero bias conductance peak with an imbalance between peak heights. Our data indicate that the splitting occurs at the superconductor side as a consequence of induced magnetization, confirming recent theoretical predictions. The imbalance is attributed to the spin polarization in the ferromagnet.Comment: 4 figure

    Evidence for Induced Magnetization in Superconductor-Ferromagnet Hetero-structures: a Scanning Tunnelling Spectroscopy Study

    Full text link
    We performed scanning tunneling spectroscopy of c-axis oriented YBCO films on top of which ferromagnetic SRO islands were grown epitaxially in-situ. When measured on the ferromagnetic islands, the density of states exhibits small gap-like features consistent with the expected short range penetration of the order parameter into the ferromagnet. However, anomalous split-gap structures are measured on the superconductor in the vicinity of ferromagnetic islands. This observation may provide evidence for the recently predicted induced magnetization in the superconductor side of a superconductor/ ferromagnet junction. The length scale of the effect inside the superconductor was found to be an order of magnitude larger than the superconducting coherence length. This is inconsistent with the theoretical prediction of a penetration depth of only a few superconducting coherence lengths. We discuss a possible origin for this discrepancy

    Anomalous proximity effect in gold coated (110) YBa2Cu3O7−δYBa_2Cu_3O_{7-\delta} films: Penetration of the Andreev bound states

    Full text link
    Scanning tunneling spectroscopy of (110) YBa2Cu3O7−δ/AuYBa_2Cu_3O_{7-\delta}/Au bi-layers reveal a proximity effect markedly different from the conventional one. While proximity-induced mini-gaps rarely appear in the Au layer, the Andreev bound states clearly penetrate into the metal. Zero bias conductance peaks are measured on Au layers thinner than 7 nm with magnitude similar to those detected on the bare superconductor films. The peaks then decay abruptly with Au thickness and disappear above 10 nm. This length is shorter than the normal coherence length and corresponds to the (ballistic) mean free path.Comment: 5 prl format pages, 4 figures, to be published in PR

    Scanning tunneling spectroscopy characterization of the pseudogap and the x = 1/8 anomaly in La2-xSrxCuO4 thin films

    Full text link
    Using scanning tunneling spectroscopy we examined the local density of states of thin c-axis La2-xSrxCuO4 films, over wide doping and temperature ranges. We found that the pseudogap exists only at doping levels lower than optimal. For x = 0.12, close to the 'anomalous' x = 1/8 doping level, a zero bias conductance peak was the dominant spectral feature, instead of the excepted V- shaped (c-axis tunneling) gap structure. We have established that this surprising effect cannot be explained by tunneling into (110) facets. Possible origins for this unique behavior are discussed.Comment: 15 pages, 6 figure

    Scanning tunneling spectroscopy of SmFeAsO0.85: Possible evidence for d-wave order parameter symmetry

    Full text link
    We report a scanning tunneling spectroscopy investigation of polycrystalline SmFeAsO0.85 having a superconducting transition at 52 K. On large regions of the sample surface the tunneling spectra exhibited V-shaped gap structures with no coherence peaks, indicating degraded surface properties. In some regions, however, the coherence peaks were clearly observed, and the V-shaped gaps could be fit to the theory of tunneling into a d-wave superconductor, yielding gap values between 8 to 8.5 meV, corresponding to the ratio 2D/KTc ~ 3.55 - 3.8, which is slightly above the BCS weak-coupling prediction. In other regions the spectra exhibited zero-bias conductance peaks, consistent with a d-wave order parameter symmetry
    • …
    corecore