2 research outputs found

    Equation of state and collective frequencies of a trapped Fermi gas along the BEC-unitarity crossover

    Full text link
    We show that the study of the collective oscillations in a harmonic trap provides a very sensitive test of the equation of state of a Fermi gas near a Feshbach resonance. Using a scaling approach, whose high accuracy is proven by comparison with exact hydrodynamic solutions, the frequencies of the lowest compressional modes are calculated at T=0 in terms of a dimensionless parameter characterizing the equation of state. The predictions for the collective frequencies, obtained from the equations of state of mean field BCS theory and of recent Monte-Carlo calculations, are discussed in detail.Comment: 4 pages, 3 figure

    Hydrodynamic Modes in a Trapped Strongly Interacting Fermi Gases of Atoms

    Full text link
    The zero-temperature properties of a dilute two-component Fermi gas in the BCS-BEC crossover are investigated. On the basis of a generalization of the variational Schwinger method, we construct approximate semi-analytical formulae for collective frequencies of the radial and the axial breathing modes of the Fermi gas under harmonic confinement in the framework of the hydrodynamic theory. It is shown that the method gives nearly exact solutions.Comment: 11 page
    corecore