16 research outputs found

    Molybdenum dioxide in carbon nanoreactors as a catalytic nanosponge for the efficient desulfurization of liquid fuels

    Get PDF
    The principle of a “catalytic nanosponge” that combines the catalysis of organosulfur oxidation and sequestration of the products from reaction mixtures is demonstrated. Group VI metal oxide nanoparticles (CrOx, MoOx, WOx) are embedded within hollow graphitized carbon nanofibers (GNFs), which act as nanoscale reaction vessels for oxidation reactions used in the decontamination of fuel. When immersed in a model liquid alkane fuel contaminated with organosulfur compounds (benzothiophene, dibenzothiophene, dimethyldibenzothiophene), it is found that MoO2@GNF nanoreactors, comprising 30 nm molybdenum dioxide nanoparticles grown within the channel of GNFs, show superior abilities toward oxidative desulfurization (ODS), affording over 98% sulfur removal at only 5.9 mol% catalyst loading. The role of the carbon nanoreactor in MoO2@GNF is to enhance the activity and stability of catalytic centers over at least 5 cycles. Surprisingly, the nanotube cavity can selectively absorb and remove the ODS products (sulfoxides and sulfones) from several model fuel systems. This effect is related to an adsorptive desulfurization (ADS) mechanism, which in combination with ODS within the same material, yields a “catalytic nanosponge” MoO2@GNF. This innovative ODS and ADS synergistic functionality negates the need for a solvent extraction step in fuel desulfurization and produces ultralow sulfur fuel

    Synthesis of hydroxylated group IV metal oxides inside hollow graphitised carbon nanofibers: nano-sponges and nanoreactors for enhanced decontamination of organophosphates

    Get PDF
    The confinement and enhanced catalytic properties of hydroxylated group IV metal oxide nanostructures inside hollow graphitised carbon nanofibers (GNF) has been demonstrated. GNF – a structural analogue of carbon nanotubes – were effectively filled with suitable precursor molecules of metal chlorides from the gas and liquid phases. Subsequent basecatalysed hydrolysis afforded amorphous, nanostructured hydroxylated metal oxide (MOx(OH)y where M = Zr, Ti, and Hf) thin films, which coat the internal surfaces of GNF. This versatile and general strategy allows the chemical composition and morphology of the encapsulated material to be modified by varying the conditions used for hydrolysis and post-synthesis thermal treatment. The increased Lewis acidic properties and high surface area of the zirconium composite promote the catalysed hydrolysis of dimethyl nitrophenyl phosphate (DMNP) – a toxic organophosphorus chemical. A four-fold enhancement in the rate of DMNP hydrolysis relative to its separate constituent components was observed, highlighting the surprising synergistic abilities of this composite material to perform both as a ‘nano-sponge’, absorbing the harmful compounds inside the GNF, and a nanoreactor, enhancing the local concentration of organophosphate around the hydroxylated metal oxide species, leading to improved catalytic performance

    Cerium Oxide Nanoparticles Inside Carbon Nanoreactors for Selective Allylic Oxidation of Cyclohexene

    Get PDF
    The confinement of cerium oxide (CeO2) nanoparticles within hollow carbon nanostructures has been achieved and harnessed to control the oxidation of cyclohexene. Graphitized carbon nanofibers (GNF) have been used as the nanoscale tubular host and filled by sublimation of the Ce(tmhd)4 complex (where tmhd = tetrakis(2,2,6,6-tetramethyl-3,5-heptanedionato)) into the internal cavity, followed by a subsequent thermal decomposition to yield the hybrid nanostructure CeO2@GNF, where nanoparticles are preferentially immobilized at the internal graphitic step-edges of the GNF. Control over the size of the CeO2 nanoparticles has been demonstrated within the range of about 4–9 nm by varying the mass ratio of the Ce(tmhd)4 precursor to GNF during the synthesis. CeO2@GNF was effective in promoting the allylic oxidation of cyclohexene in high yield with time-dependent control of product selectivity at a comparatively low loading of CeO2 of 0.13 mol %. Unlike many of the reports to date where ceria catalyzes such organic transformations, we found the encapsulated CeO2 to play the key role of radical initiator due to the presence of Ce3+ included in the structure, with the nanotube acting as both a host, preserving the high performance of the CeO2 nanoparticles anchored at the GNF step-edges over multiple uses, and an electron reservoir, maintaining the balance of Ce3+ and Ce4+ centers. Spatial confinement effects ensure excellent stability and recyclability of CeO2@GNF nanoreactors

    Genetic determinants of risk in pulmonary arterial hypertension: international genome-wide association studies and meta-analysis

    Get PDF
    Background Rare genetic variants cause pulmonary arterial hypertension, but the contribution of common genetic variation to disease risk and natural history is poorly characterised. We tested for genome-wide association for pulmonary arterial hypertension in large international cohorts and assessed the contribution of associated regions to outcomes. Methods We did two separate genome-wide association studies (GWAS) and a meta-analysis of pulmonary arterial hypertension. These GWAS used data from four international case-control studies across 11744 individuals with European ancestry (including 2085 patients). One GWAS used genotypes from 5895 whole-genome sequences and the other GWAS used genotyping array data from an additional 5849 individuals. Cross-validation of loci reaching genome-wide significance was sought by meta-analysis. Conditional analysis corrected for the most significant variants at each locus was used to resolve signals for multiple associations. We functionally annotated associated variants and tested associations with duration of survival. All-cause mortality was the primary endpoint in survival analyses. Findings A locus near SOX17 (rs10103692, odds ratio 1·80 [95% CI 1·55–2·08], p=5·13×10– ¹⁵) and a second locus in HLA-DPA1 and HLA-DPB1 (collectively referred to as HLA-DPA1/DPB1 here; rs2856830, 1·56 [1·42–1·71], p=7·65×10– ²⁰) within the class II MHC region were associated with pulmonary arterial hypertension. The SOX17 locus had two independent signals associated with pulmonary arterial hypertension (rs13266183, 1·36 [1·25–1·48], p=1·69×10– ¹²; and rs10103692). Functional and epigenomic data indicate that the risk variants near SOX17 alter gene regulation via an enhancer active in endothelial cells. Pulmonary arterial hypertension risk variants determined haplotype-specific enhancer activity, and CRISPR-mediated inhibition of the enhancer reduced SOX17 expression. The HLA-DPA1/DPB1 rs2856830 genotype was strongly associated with survival. Median survival from diagnosis in patients with pulmonary arterial hypertension with the C/C homozygous genotype was double (13·50 years [95% CI 12·07 to >13·50]) that of those with the T/T genotype (6·97 years [6·02–8·05]), despite similar baseline disease severity. Interpretation This is the first study to report that common genetic variation at loci in an enhancer near SOX17 and in HLA-DPA1/DPB1 is associated with pulmonary arterial hypertension. Impairment of SOX17 function might be more common in pulmonary arterial hypertension than suggested by rare mutations in SOX17. Further studies are needed to confirm the association between HLA typing or rs2856830 genotyping and survival, and to determine whether HLA typing or rs2856830 genotyping improves risk stratification in clinical practice or trials. Funding UK NIHR, BHF, UK MRC, Dinosaur Trust, NIH/NHLBI, ERS, EMBO, Wellcome Trust, EU, AHA, ACClinPharm, Netherlands CVRI, Dutch Heart Foundation, Dutch Federation of UMC, Netherlands OHRD and RNAS, German DFG, German BMBF, APH Paris, INSERM, Université Paris-Sud, and French ANR

    GWAS meta-analysis of intrahepatic cholestasis of pregnancy implicates multiple hepatic genes and regulatory elements

    Get PDF
    Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-specific liver disorder affecting 0.5–2% of pregnancies. The majority of cases present in the third trimester with pruritus, elevated serum bile acids and abnormal serum liver tests. ICP is associated with an increased risk of adverse outcomes, including spontaneous preterm birth and stillbirth. Whilst rare mutations affecting hepatobiliary transporters contribute to the aetiology of ICP, the role of common genetic variation in ICP has not been systematically characterised to date. Here, we perform genome-wide association studies (GWAS) and meta-analyses for ICP across three studies including 1138 cases and 153,642 controls. Eleven loci achieve genome-wide significance and have been further investigated and fine-mapped using functional genomics approaches. Our results pinpoint common sequence variation in liver-enriched genes and liver-specific cis-regulatory elements as contributing mechanisms to ICP susceptibility

    The Structures of Ordered Defects in Thiocyanate Analogues of Prussian Blue

    No full text
    We report the structures of six new divalent transition metal hexathiocyanatobismuthate frameworks with the approximate formula MII[Bi(SCN)6]1−x · xH2O, M = Mn, Co, Ni and Zn. These frameworks are defective analogues of the perovskite-derived trivalent transition metal hexathiocyanatobismuthates MIII[Bi(SCN)6]. The defects in these new thiocyanate frameworks order and produce complex superstructures due to the low symmetry of the parent structure, in contrast to the related and more well-studied cyanide Prussian Blue analogues. Despite the close similarities in the chemistries of these four transition metal cations, we find that each framework contains a different mechanism for accommodating the lowered transition metal charge, making use of some combination of Bi(SCN)63– vacancies, M antisite defects, water substitution for thiocyanate, adventitious extra-framework cations and reduced metal coordination number. These materials provide an unusually clear view of defects in molecular framework materials and their variety suggests that similar richness may be waiting to be uncovered in other hybrid perovskite frameworks. </div

    The structures of ordered defects in thiocyanate analogues of Prussian Blue.

    Get PDF
    We report the structures of six new divalent transition metal hexathiocyanatobismuthate frameworks with the generic formula , M = Mn, Co, Ni and Zn. These frameworks are defective analogues of the perovskite-derived trivalent transition metal hexathiocyanatobismuthates MIII[Bi(SCN)6]. The defects in these new thiocyanate frameworks order and produce complex superstructures due to the low symmetry of the parent structure, in contrast to the related and more well-studied cyanide Prussian Blue analogues. Despite the close similarities in the chemistries of these four transition metal cations, we find that each framework contains a different mechanism for accommodating the lowered transition metal charge, making use of some combination of Bi(SCN)6 3- vacancies, MBi antisite defects, water substitution for thiocyanate, adventitious extra-framework cations and reduced metal coordination number. These materials provide an unusually clear view of defects in molecular framework materials and their variety suggests that similar richness may be waiting to be uncovered in other hybrid perovskite frameworks

    Defect Etching in Carbon Nanotube Walls for Porous Carbon Nanoreactors: Implications for CO2 Sorption and the Hydrosilylation of Phenylacetylene

    No full text
    A method of pore fabrication in the walls of carbon nanotubes has been developed, leading to porous nanotubes that have been filled with catalysts and utilized in liquid- and gas-phase reactions. Chromium oxide nanoparticles have been utilized as highly effective etchants of carbon nanotube sidewalls. Tuning the thermal profile and loading of this nanoscale oxidant, both of which influence the localized oxidation of the carbon, have allowed the controlled formation of defects and holes with openings of 40–60 nm, penetrating through several layers of the graphitic carbon nanotube sidewall, resulting in templated nanopore propagation. The porous carbon nanotubes have been demonstrated as catalytic nanoreactors, effectively stabilizing catalytic nanoparticles against agglomeration and modulating the reaction environment around active centers. CO2 sorption on ruthenium nanoparticles (RuNPs) inside nanoreactors led to distinctive surface-bound intermediates (such as carbonate species), compared to RuNPs on amorphous carbon. Introducing pores in nanoreactors modulates the strength of absorption of these intermediates, as they bond more strongly on RuNPs in porous nanoreactors as compared to the nanoreactors without pores. In the liquid-phase hydrosilylation of phenylacetylene, the confinement of Rh4(CO)12 catalyst centers within the porous nanoreactors changes the distribution of the products relative to those observed in the absence of the additional pores. These changes have been attributed to the enhanced local concentration of phenylacetylene and the environment in which the catalytic centers reside within the porous carbon host

    Whole-genome sequencing of patients with rare diseases in a national health system.

    Get PDF
    Most patients with rare diseases do not receive a molecular diagnosis and the aetiological variants and causative genes for more than half such disorders remain to be discovered1. Here we used whole-genome sequencing (WGS) in a national health system to streamline diagnosis and to discover unknown aetiological variants in the coding and non-coding regions of the genome. We generated WGS data for 13,037 participants, of whom 9,802 had a rare disease, and provided a genetic diagnosis to 1,138 of the 7,065 extensively phenotyped participants. We identified 95 Mendelian associations between genes and rare diseases, of which 11 have been discovered since 2015 and at least 79 are confirmed to be aetiological. By generating WGS data of UK Biobank participants2, we found that rare alleles can explain the presence of some individuals in the tails of a quantitative trait for red blood cells. Finally, we identified four novel non-coding variants that cause disease through the disruption of transcription of ARPC1B, GATA1, LRBA and MPL. Our study demonstrates a synergy by using WGS for diagnosis and aetiological discovery in routine healthcare

    SHIP and Tumour-Associated Macrophages

    No full text
    corecore