231 research outputs found

    Further stable neutron star models from f(R) gravity

    Full text link
    Neutron star models in perturbative f(R)f(R) gravity are considered with realistic equations of state. In particular, we consider the FPS, SLy and other equations of state and a case of piecewise equation of state for stars with quark cores. The mass-radius relations for f(R)=R+R(eR/R01)f(R)=R+R(e^{-R/R_{0}}-1) model and for R2R^2 models with logarithmic and cubic corrections are obtained. In the case of R2R^2 gravity with cubic corrections, we obtain that at high central densities (ρ>10ρns\rho>10\rho_{ns}, where ρns=2.7×1014\rho_{ns}=2.7\times 10^{14} g/cm3^{3} is the nuclear saturation density), stable star configurations exist. The minimal radius of such stars is close to 99 km with maximal mass 1.9M\sim 1.9 M_{\odot} (SLy equation). A similar situation takes place for AP4 and BSK20 EoS. Such an effect can give rise to more compact stars than in General Relativity. If observationally identified, such objects could constitute a formidable signature for modified gravity at astrophysical level. Another interesting result can be achieved in modified gravity with only a cubic correction. For some EoS, the upper limit of neutron star mass increases and therefore these EoS can describe realistic star configurations (although, in General Relativity, these EoS are excluded by observational constraints).Comment: 18 pages, 17 figures, revised version significally expanded, to appear in JCA

    Maximal neutron star mass and the resolution of hyperon puzzle in modified gravity

    Full text link
    The so-called hyperon puzzle in the theory of neutron stars is considered in the framework of modified f(R)f(R) gravity. We show that for simple hyperon equations of state, it is possible to obtain the maximal neutron star mass which satisfies the recent observational data for PSR J1614-2230, in higher-derivative models with power-law terms as f(R)=R+αR2+βR3f(R) = R+\alpha R^2+ \beta R^3. The soft hyperon equation of state under consideration is usually treated as non-realistic in the standard General Relativity. The numerical analysis of Mass-Radius relation for massive neutron stars with hyperon equation of state in modified gravity turns out to be consistent with observations. Thus, we show that the same modified gravity can solve at once three problems: consistent description of the maximal mass of neutron star, realistic Mass-Radius relation and account for hyperons in equation of state.Comment: 10 pages, 6 figures, some misprints are fixe

    The Cosmological Models with Jump Discontinuities

    Full text link
    The article is dedicated to one of the most undeservedly overlooked properties of the cosmological models: the behaviour at, near and due to a jump discontinuity. It is most interesting that while the usual considerations of the cosmological dynamics deals heavily in the singularities produced by the discontinuities of the second kind (a.k.a. the essential discontinuities) of one (or more) of the physical parameters, almost no research exists to date that would turn to their natural extension/counterpart: the singularities induced by the discontinuities of the first kind (a.k.a. the jump discontinuities). It is this oversight that this article aims to amend. In fact, it demonstrates that the inclusion of such singularities allows one to produce a number of very interesting scenarios of cosmological evolution. For example, it produces the cosmological models with a finite value of the equation of state parameter w=p/ρw=p/\rho even when both the energy density and the pressure diverge, while at the same time keeping the scale factor finite. Such a dynamics is shown to be possible only when the scale factor experiences a finite jump at some moment of time. Furthermore, if it is the first derivative of the scale factor that experiences a jump, then a whole new and different type of a sudden future singularity appears. Finally, jump discontinuities suffered by either a second or third derivatives of a scale factor lead to cosmological models experiencing a sudden dephantomization -- or avoiding the phantomization altogether. This implies that theoretically there should not be any obstacles for extending the cosmological evolution beyond the corresponding singularities; therefore, such singularities can be considered a sort of a cosmological phase transition.Comment: 27 pages, 5 figures. Inserted additional references; provided in Introduction a specific example of a well-known physical field leading to a cosmological jump discontinuity; seriously expanded the discussion of possible physical reasons leading to the jump discontinuities in view of recent theoretical and experimental discoverie

    Brane cosmology from observational surveys and its comparison with standard FRW cosmology

    Full text link
    Several dark energy models on the brane are investigated. They are compared with corresponding theories in the frame of 4d Friedmann-Robertson-Walker cosmology. To constrain the parameters of the models considered, recent observational data, including SNIa apparent magnitude measurements, baryon acoustic oscillation results, Hubble parameter evolution data and matter density perturbations are used. Explicit formulas of the so-called {\it state-finder} parameters in teleparallel theories are obtained that could be useful to test these models and to establish a link between Loop Quantum Cosmology and Brane Cosmology. It is concluded that a joint analysis as the one developed here allows to estimate, in a very convenient way, possible deviation of the real universe cosmology from the standard Friedmann-Robertson-Walker one.Comment: 19 pages, 6 figures. arXiv admin note: text overlap with arXiv:1206.219

    Astronomical bounds on future big freeze singularity

    Full text link
    Recently it was found that dark energy in the form of phantom generalized Chaplygin gas may lead to a new form of the cosmic doomsday, the big freeze singularity. Like the big rip singularity, the big freeze singularity would also take place at a finite future cosmic time, but unlike the big rip singularity it happens for a finite scale factor.Our goal is to test if a universe filled with phantom generalized Chaplygin gas can conform to the data of astronomical observations. We shall see that if the universe is only filled with generalized phantom Chaplygin gas with equation of state p=c2s2/ραp=-c^2s^2/\rho^{\alpha} with α<1\alpha<-1, then such a model cannot be matched to the data of astronomical observations. To construct matched models one actually need to add dark matter. This procedure results in cosmological scenarios which do not contradict the data of astronomical observations and allows one to estimate how long we are now from the future big freeze doomsday.Comment: 8 page

    The linearization method and new classes of exact solutions in cosmology

    Full text link
    We develop a method for constructing exact cosmological solutions of the Einstein equations based on representing them as a second-order linear differential equation. In particular, the method allows using an arbitrary known solution to construct a more general solution parameterized by a set of 3\textit{N} constants, where \textit{N} is an arbitrary natural number. The large number of free parameters may prove useful for constructing a theoretical model that agrees satisfactorily with the results of astronomical observations. Cosmological solutions on the Randall-Sundrum brane have similar properties. We show that three-parameter solutions in the general case already exhibit inflationary regimes. In contrast to previously studied two-parameter solutions, these three-parameter solutions can describe an exit from inflation without a fine tuning of the parameters and also several consecutive inflationary regimes.Comment: 7 page
    corecore