4 research outputs found
Recommended from our members
The role of the podoplanin-CLEC-2 pathway in stromal cell regulation of dendritic cell motility and lymph node architecture
In addition to leukocytes, secondary lymphoid organs are populated by non-hematopoietic stromal cells. This diverse group of cells supports lymphocyte migration and homing, facilitates antigen delivery, and promotes T cell survival. However, there is relatively little known about the specific molecules governing the roles that these cells play in regulating dendritic cell (DC) motility and lymph node architecture. Here, we examine the interaction between two molecules, CLEC-2 and podoplanin (PDPN), that are critical for DC migration and maintaining structural integrity of lymph nodes. Together, these studies identify novel functions of lymph node stromal cells and a unique function for PDPN in the immune system.
In response detecting an potentially harmful antigen, DCs in peripheral tissues mature and travel to downstream lymph nodes by following chemokine gradients secreted by lymphatic endothelial cells (LECs) and fibroblastic reticular cells (FRCs) present in the lymph node paracortex. We discovered that, in addition to chemokines, DC migration requires CLEC-2 on DCs, as engagement of CLEC-2 with PDPN, which is expressed by LECs and FRCs, incites DC motility and is required for DC entry into the lymphatics, efficient arrival in the lymph node, and migration along the FRC network within the lymph node.
Next, we examined the effect of this interaction with respect to the stromal cell. Through a combination approaches, we discovered that PDPN is a master regulator of contractility in FRCs. The fact that FRCs are contractile cells was previously reported, but our study is the first to identify a function for this contractility: upon blockade of PDPN-mediated contractility, lymph nodes became enlarged, the FRC network became more sparse, and there were increased numbers of lymphocytes in the lymph node. Importantly, during an immune response, these changes resulted in more proliferation of antigen-specific T cells and impaired contraction of the lymph node upon resolution of inflammation. Finally, we found that CLEC-2 binding PDPN recapitulated the effect of PDPN deletion. Thus, during an immune response, CLEC-2+ DCs would use PDPN to efficiently migrate to the lymph node and simultaneously cause FRCs to relax and prepare the lymph node for expansion
Recommended from our members
Podoplanin: Emerging Functions in Development, the Immune System, and Cancer
Podoplanin (PDPN) is a well-conserved, mucin-type transmembrane protein expressed in multiple tissues during ontogeny and in adult animals, including the brain, heart, kidney, lungs, osteoblasts, and lymphoid organs. Studies of PDPN-deficient mice have demonstrated that this molecule plays a critical role in development of the heart, lungs, and lymphatic system. PDPN is widely used as a marker for lymphatic endothelial cells and fibroblastic reticular cells of lymphoid organs and for lymphatics in the skin and tumor microenvironment. Much of the mechanistic insight into PDPN biology has been gleaned from studies of tumor cells; tumor cells often upregulate PDPN as they undergo epithelial-mesenchymal transition and this upregulation is correlated with increased motility and metastasis. The physiological role of PDPN that has been most studied is its ability to aggregate and activate CLEC-2-expressing platelets, as PDPN is the only known endogenous ligand for CLEC-2. However, more recent studies have revealed that PDPN also plays crucial roles in the biology of immune cells, including T cells and dendritic cells. This review will provide a comprehensive overview of the diverse roles of PDPN in development, immunology, and cancer
Podoplanin: emerging functions in development, the immune system, and cancer
Podoplanin (PDPN) is a well-conserved, mucin-type transmembrane protein expressed in multiple tissues during ontogeny and in adult animals, including the brain, heart, kidney, lungs, osteoblasts, and lymphoid organs. Studies of PDPN-deficient mice have demonstrated that this molecule plays a critical role in development of the heart, lungs, and lymphatic system. PDPN is widely used as a marker for lymphatic endothelial cells and fibroblastic reticular cells of lymphoid organs and for lymphatics in the skin and tumor microenvironment. Much of the mechanistic insight into PDPN biology has been gleaned from studies of tumor cells; tumor cells often upregulate PDPN as they undergo epithelial-mesenchymal transition and this upregulation is correlated with increased motility and metastasis. The physiological role of PDPN that has been most studied is its ability to aggregate and activate CLEC-2-expressing platelets, as PDPN is the only known endogenous ligand for CLEC-2. However, more recent studies have revealed that PDPN also plays crucial roles in the biology of immune cells, including T cells and dendritic cells. This review will provide a comprehensive overview of the diverse roles of PDPN in development, immunology, and cancer
Recommended from our members
Transcriptional profiling of stroma from inflamed and resting lymph nodes defines immunological hallmarks
Lymph node stromal cells (LNSCs) closely regulate immunity and self-tolerance, yet key aspects of their biology remain poorly illuminated. Comparative transcriptomic analyses of murine LNSC subsets revealed expression of important immune mediators, growth factors, and novel structural components. Pairwise analyses of ligands and cognate receptors across hematopoietic and stromal subsets suggested a complex web of cross-talk. Compared with skin and thymic fibroblasts, fibroblastic reticular cells (FRCs) were enriched in genes relevant to cytokine signaling. LNSCs from inflamed lymph nodes upregulated acute phase response genes, chemokines, and antigen presentation genes. Poorly studied podoplanin−CD31− LNSCs showed similarities to FRCs, but lacked IL-7 expression, and were identified as myofibroblastic integrin α7+ pericytes. Together these data comprehensively describe the transcriptional characteristics of LNSC subsets.Engineering and Applied Science