62 research outputs found

    Similar neural pathways link psychological stress and brain-age in health and multiple sclerosis

    Get PDF
    Clinical and neuroscientific studies suggest a link between psychological stress and reduced brain health in health and neurological disease but it is unclear whether mediating pathways are similar. Consequently, we applied an arterial-spin-labeling MRI stress task in 42 healthy persons and 56 with multiple sclerosis, and investigated regional neural stress responses, associations between functional connectivity of stress-responsive regions and the brain-age prediction error, a highly sensitive machine learning brain health biomarker, and regional brain-age constituents in both groups. Stress responsivity did not differ between groups. Although elevated brain-age prediction errors indicated worse brain health in patients, anterior insula–occipital cortex (healthy persons: occipital pole; patients: fusiform gyrus) functional connectivity correlated with brain-age prediction errors in both groups. Finally, also gray matter contributed similarly to regional brain-age across groups. These findings might suggest a common stress–brain health pathway whose impact is amplified in multiple sclerosis by disease-specific vulnerability factors

    Practical recognition tools of immunoglobulin G serum antibodies against the myelin oligodendrocyte glycoprotein‐positive optic neuritis and its clinical implications

    Get PDF
    Myelin oligodendrocyte glycoprotein (MOG)‐associated disease is an autoimmune disease of the central nervous system, associated with the presence of immunoglobulin G serum antibodies against MOG. Recent data have allowed characterization of the clinical spectrum of MOG‐associated disease, which is now considered a new disease entity, distinct from multiple sclerosis and neuromyelitis optica spectrum disorders. Optic neuritis is the most common clinical presentation of MOG‐associated disease in adults, both at disease onset and during the disease course, and has several distinct clinical and paraclinical features. Immunoglobulin G serum antibodies against MOG‐positive optic neuritis is often bilateral and associated with optic disc swelling and a longitudinally extensive abnormal magnetic resonance imaging signal involving the retrobulbar portion of the optic nerve. The visual acuity during the acute attack is severely decreased, and the response to corticosteroids is often rapid and prominent. However, early relapses after steroid cessation are common, and a subset of patients is left with a permanent visual disability. In this review, we discuss the clinical and paraclinical features of immunoglobulin G serum antibodies against MOG‐positive optic neuritis in adults, and focus on the distinctive features that can enable its early diagnosis. Therapeutical considerations at the acute stage and for relapse prevention are further deliberated

    Uncovering convolutional neural network decisions for diagnosing multiple sclerosis on conventional MRI using layer-wise relevance propagation

    Get PDF
    Machine learning-based imaging diagnostics has recently reached or even surpassed the level of clinical experts in several clinical domains. However, classification decisions of a trained machine learning system are typically non-transparent, a major hindrance for clinical integration, error tracking or knowledge discovery. In this study, we present a transparent deep learning framework relying on 3D convolutional neural networks (CNNs) and layer-wise relevance propagation (LRP) for diagnosing multiple sclerosis (MS), the most widespread autoimmune neuroinflammatory disease. MS is commonly diagnosed utilizing a combination of clinical presentation and conventional magnetic resonance imaging (MRI), specifically the occurrence and presentation of white matter lesions in T2-weighted images. We hypothesized that using LRP in a naive predictive model would enable us to uncover relevant image features that a trained CNN uses for decision-making. Since imaging markers in MS are well-established this would enable us to validate the respective CNN model. First, we pre-trained a CNN on MRI data from the Alzheimer's Disease Neuroimaging Initiative (n = 921), afterwards specializing the CNN to discriminate between MS patients (n = 76) and healthy controls (n = 71). Using LRP, we then produced a heatmap for each subject in the holdout set depicting the voxel-wise relevance for a particular classification decision. The resulting CNN model resulted in a balanced accuracy of 87.04% and an area under the curve of 96.08% in a receiver operating characteristic curve. The subsequent LRP visualization revealed that the CNN model focuses indeed on individual lesions, but also incorporates additional information such as lesion location, non-lesional white matter or gray matter areas such as the thalamus, which are established conventional and advanced MRI markers in MS. We conclude that LRP and the proposed framework have the capability to make diagnostic decisions of CNN models transparent, which could serve to justify classification decisions for clinical review, verify diagnosis-relevant features and potentially gather new disease knowledge

    Optic chiasm measurements may be useful markers of anterior optic pathway degeneration in neuromyelitis optica spectrum disorders

    Get PDF
    OBJECTIVES: We aimed to evaluate optic chiasm (OC) measures as potential imaging marker for anterior optic pathway damage assessment in the context of neuromyelitis optica spectrum disorders (NMOSD). MATERIALS AND METHOD: This cross-sectional study included 39 patients exclusively with aquaporin 4-IgG seropositive NMOSD of which 25 patients had a history of optic neuritis (NMOSD-ON) and 37 age- and sex-matched healthy controls (HC). OC heights, width, and area were measured using standard 3D T1-weighted MRI. Sensitivity of these measures to detect neurodegeneration in the anterior optic pathway was assessed in receiver operating characteristics analyses. Correlation coefficients were used to assess associations with structural measures of the anterior optic pathway (optic nerve dimensions, retinal ganglion cell loss) and clinical measures (visual function and disease duration). RESULTS: OC heights and area were significantly smaller in NMOSD-ON compared to HC (NMOSD-ON vs. HC p < 0.0001). An OC area smaller than 22.5 mm(2) yielded a sensitivity of 0.92 and a specificity of 0.92 in separating chiasms of NMOSD-ON from HC. OC area correlated well with structural and clinical measures in NMOSD-ON: optic nerve diameter (r = 0.4, p = 0.047), peripapillary retinal nerve fiber layer thickness (r = 0.59, p = 0.003), global visual acuity (r = − 0.57, p = 0.013), and diseases duration (r = − 0.5, p = 0.012). CONCLUSION: Our results suggest that OC measures are promising and easily accessible imaging markers for the assessment of anterior optic pathway damage. KEY POINTS: (1) Optic chiasm dimensions were smaller in neuromyelitis optica spectrum disorder patients compared to healthy controls. (2) Optic chiasm dimensions are associated with retinal measures and visual dysfunction. (3) The optic chiasm might be used as an easily accessible imaging marker of neurodegeneration in the anterior optic pathway with potential functional relevance

    Functional connectome fingerprinting and stability in multiple sclerosis

    Get PDF
    BACKGROUND: Functional connectome fingerprinting can identify individuals based on their functional connectome. Previous studies relied mostly on short intervals between fMRI acquisitions. OBJECTIVE: This cohort study aimed to determine the stability of connectome-based identification and their underlying signatures in patients with multiple sclerosis and healthy individuals with long follow-up intervals. METHODS: We acquired resting-state fMRI in 70 patients with multiple sclerosis and 273 healthy individuals with long follow-up times (up to 4 and 9 years, respectively). Using functional connectome fingerprinting, we examined the stability of the connectome and additionally investigated which regions, connections and networks supported individual identification. Finally, we predicted cognitive and behavioural outcome based on functional connectivity. RESULTS: Multiple sclerosis patients showed connectome stability and identification accuracies similar to healthy individuals, with longer time delays between imaging sessions being associated with accuracies dropping from 89% to 76%. Lesion load, brain atrophy or cognitive impairment did not affect identification accuracies within the range of disease severity studied. Connections from the fronto-parietal and default mode network were consistently most distinctive, i.e., informative of identity. The functional connectivity also allowed the prediction of individual cognitive performances. CONCLUSION: Our results demonstrate that discriminatory signatures in the functional connectome are stable over extended periods of time in multiple sclerosis, resulting in similar identification accuracies and distinctive long-lasting functional connectome fingerprinting signatures in patients and healthy individuals

    Interactions of optic radiation lesions with retinal and brain atrophy in early multiple sclerosis

    Get PDF
    OBJECTIVE: Retrograde trans-synaptic neuroaxonal degeneration is considered a key pathological factor of subclinical retinal neuroaxonal damage in multiple sclerosis (MS). We aim to evaluate the longitudinal association of optic radiation (OR) lesion activity with retinal neuroaxonal damage and its role in correlations between retinal and brain atrophy in people with clinically isolated syndrome and early MS (pweMS). METHODS: Eighty-five pweMS were retrospectively screened from a prospective cohort (Berlin CIS cohort). Participants underwent 3T magnetic resonance imaging (MRI) for OR lesion volume and brain atrophy measurements and optical coherence tomography (OCT) for retinal layer thickness measurements. All pweMS were followed with serial OCT and MRI over a median follow-up of 2.9 (interquartile range: 2.6-3.4) years. Eyes with a history of optic neuritis prior to study enrollment were excluded. Linear mixed models were used to analyze the association of retinal layer thinning with changes in OR lesion volume and brain atrophy. RESULTS: Macular ganglion cell-inner plexiform layer (GCIPL) thinning was more pronounced in pweMS with OR lesion volume increase during follow-up compared to those without (Difference: -0.82 μm [95% CI:-1.49 to -0.15], p = 0.018). Furthermore, GCIPL thinning correlated with both OR lesion volume increase (β [95% CI] = -0.27 [-0.50 to -0.03], p = 0.028) and brain atrophy (β [95% CI] = 0.47 [0.25 to 0.70], p < 0.001). Correlations of GCIPL changes with brain atrophy did not differ between pweMS with or without OR lesion increase (η(2)(p) = 5.92e(-7), p = 0.762). INTERPRETATION: Faster GCIPL thinning rate is associated with increased OR lesion load. Our results support the value of GCIPL as a sensitive biomarker reflecting both posterior visual pathway pathology and global brain neurodegeneration

    Prefrontal-amygdala emotion regulation and depression in multiple sclerosis

    Get PDF
    Depression is among the most common comorbidities in multiple sclerosis and has severe psychosocial consequences. Alterations in neural emotion regulation in amygdala and prefrontal cortex have been recognized as key mechanism of depression but never been investigated in multiple sclerosis depression. In this cross-sectional observational study, we employed a functional MRI task investigating neural emotion regulation by contrasting regulated versus unregulated negative stimulus perception in 16 persons with multiple sclerosis and depression (47.9 ± 11.8 years; 14 female) and 26 persons with multiple sclerosis but without depression (47.3 ± 11.7 years; 14 female). We tested the impact of depression and its interaction with lesions in amygdala-prefrontal fibre tracts on brain activity reflecting emotion regulation. A potential impact of sex, age, information processing speed, disease duration, overall lesion load, grey matter fraction, and treatment was taken into account in these analyses. Patients with depression were less able (i) to downregulate negative emotions than those without (t = -2.25, P = 0.012, β = -0.33) on a behavioural level according to self-report data and (ii) to downregulate activity in a left amygdala coordinate (t = 3.03, P(Family-wise error [FWE]-corrected) = 0.017, β = 0.39). Moreover, (iii) an interdependent effect of depression and lesions in amygdala-prefrontal tracts on activity was found in two left amygdala coordinates (t = 3.53, p(FWE9 = 0.007, β = 0.48; t = 3.21, p(FWE) = 0.0158, β = 0.49) and one right amygdala coordinate (t = 3.41, p(FWE) = 0.009, β = 0.51). Compatible with key elements of the cognitive depression theory formulated for idiopathic depression, our study demonstrates that depression in multiple sclerosis is characterized by impaired neurobehavioural emotion regulation. Complementing these findings, it shows that the relation between neural emotion regulation and depression is affected by lesion load, a key pathological feature of multiple sclerosis, located in amygdala-prefrontal tracts

    CD4+ T cell mitochondrial genotype in Multiple Sclerosis: a cross-sectional and longitudinal analysis

    Get PDF
    Multiple Sclerosis (MS) is a chronic autoimmune demyelinating disease of the central nervous system (CNS), with a largely unknown etiology, where mitochondrial dysfunction likely contributes to neuroaxonal loss and brain atrophy. Mirroring the CNS, peripheral immune cells from patients with MS, particularly CD4+ T cells, show inappropriate mitochondrial phenotypes and/or oxidative phosphorylation (OxPhos) insufficiency, with a still unknown contribution of mitochondrial DNA (mtDNA). We hypothesized that mitochondrial genotype in CD4+ T cells might influence MS disease activity and progression. Thus, we performed a retrospective cross-sectional and longitudinal study on patients with a recent diagnosis of either Clinically Isolated Syndrome (CIS) or Relapsing–Remitting MS (RRMS) at two timepoints: 6 months (VIS1) and 36 months (VIS2) after disease onset. Our primary outcomes were the differences in mtDNA extracted from CD4+ T cells between: (I) patients with CIS/RRMS (PwMS) at VIS1 and age- and sex-matched healthy controls (HC), in the cross-sectional analysis, and (II) different diagnostic evolutions in PwMS from VIS1 to VIS2, in the longitudinal analysis. We successfully performed mtDNA whole genome sequencing (mean coverage: 2055.77 reads/base pair) in 183 samples (61 triplets). Nonetheless, mitochondrial genotype was not associated with a diagnosis of CIS/RRMS, nor with longitudinal diagnostic evolution

    Central stress processing, T-cell responsivity to stress hormones, and disease severity in multiple sclerosis

    Get PDF
    Epidemiological, clinical and neuroscientific studies support a link between psychobiological stress and multiple sclerosis. Neuroimaging suggests that blunted central stress processing goes along with higher multiple sclerosis severity, neuroendocrine studies suggest that blunted immune system sensitivity to stress hormones is linked to stronger neuroinflammation. Until now, however, no effort has been made to elucidate whether central stress processing and immune system sensitivity to stress hormones are related in a disease-specific fashion, and if so, whether this relation is clinically meaningful. Consequently, we conducted two functional MRI analyses based on a total of 39 persons with multiple sclerosis and 25 healthy persons. Motivated by findings of an altered interplay between neuroendocrine stress processing and T-cell glucocorticoid sensitivity in multiple sclerosis, we searched for neural networks whose stress task-evoked activity is differentially linked to peripheral T-cell glucocorticoid signalling in patients versus healthy persons as a potential indicator of disease-specific CNS–immune crosstalk. Subsequently, we tested whether this activity is simultaneously related to disease severity. We found that activity of a network comprising right anterior insula, right fusiform gyrus, left midcingulate and lingual gyrus was differentially coupled to T-cell glucocorticoid signalling across groups. This network’s activity was simultaneously linked to patients’ lesion volume, clinical disability and information-processing speed. Complementary analyses revealed that T-cell glucocorticoid signalling was not directly linked to disease severity. Our findings show that alterations in the coupling between central stress processing and T-cell stress hormone sensitivity are related to key severity measures of multiple sclerosis

    Impact of treatment on cellular immunophenotype in MS: a cross-sectional study

    Get PDF
    OBJECTIVE: To establish cytometry profiles associated with disease stages and immunotherapy in MS. METHODS: Demographic/clinical data and peripheral blood samples were collected from 227 patients with MS and 82 sex- and age-matched healthy controls (HCs) enrolled in a cross-sectional study at 4 European MS centers (Spain, Italy, Germany, and Norway). Flow cytometry of isolated peripheral blood mononuclear cells was performed in each center using specifically prepared antibody-cocktail Lyotubes; data analysis was centralized at the Genoa center. Differences in immune cell subsets were assessed between groups of untreated patients with relapsing-remitting or progressive MS (RRMS or PMS) and HCs and between groups of patients with RRMS taking 6 commonly used disease-modifying drugs. RESULTS: In untreated patients with MS, significantly higher frequencies of Th17 cells in the RRMS population compared with HC and lower frequencies of B-memory/B-regulatory cells as well as higher percentages of B-mature cells in patients with PMS compared with HCs emerged. Overall, the greatest deviation in immunophenotype in MS was observed by treatment rather than disease course, with the strongest impact found in fingolimod-treated patients. Fingolimod induced a decrease in total CD4(+) T cells and in B-mature and B-memory cells and increases in CD4(+) and CD8(+) T-regulatory and B-regulatory cells. CONCLUSIONS: Our highly standardized, multisite cytomics data provide further understanding of treatment impact on MS immunophenotype and could pave the way toward monitoring immune cells to help clinical management of MS individuals
    corecore