12 research outputs found
Water Sorption Isotherm Characteristics of Seeds of Six Indigenous Forest Tree Species in Ghana
The relationship between storage temperature, relative humidity and seed water content was investigated for six indigenous forest tree seed species, namely Garcinia kola, Terminalia superba, Terminalia ivorensis, Mansonia altissima, Entandrophragma angolense and Khaya anthotheca in Ghana. Seeds were equilibrated over a series of lithium chloride solutions with relative humidities ranging from 12 to 93% and silica gel with relative humidity of 3% at 20 ºC. Seeds reached equilibrium with different days depending on seed size and structure, ranging from 13 days for E. angolense to 91 days for G. kola. When seeds equilibrated, moisture contents were determined gravimetrically, and values of moisture contents were then plotted against relative humidity to construct moisture sorption isotherms for the species. Seeds of T. superba, T. ivorensis, M. altissima, E. angolense and K. anthotheca, exhibited a sigmoidal relationship between seed water content and relative humidity indicative of three regions of water binding. Contrarily to other reports, the shape of the isotherm curve for G. kola – a desiccation sensitive species – also showed the reversed sigmoid pattern similar to isotherm curves of orthodox species rather than the monotonic shape. The isotherms showed that seed moisture content increased with increasing relative humidity. Seed samples of G. kola, placed at all relative humidities chambers, lost water(desorption) as the initial water content of 58% was very high and, therefore, possessed a higher water potential than the environments. Seeds of the other species either lost water (desorption) to the relative humidity chambers, or absorbed water from the chambers depending on the relative humidity of the environment they were placed
Germination résponses of Khaya anthotheca seeds to a range of alternating and constant températures provided by the 2-way Grant’s thermogradient plate
Khaya anthotheca seeds were placed in Petri dishes containing a gel of 1% water agar for germination over a period of 30 consecutive days. Petri dishes were arranged 8 units x 8 units on the 2-way Grant’s thermogradient plate (a bi-directional incubator). The goal of the study was to take a more comprehensive look at germination responses of seeds to a broad range of alternating or constant temperatures on the thermogradient plate. The instrument allows for germination testing of seeds over a wide range of single temperature and alternating temperature regimes over a time continuum, given 64 temperature combinations (regimes) (5 to 40°C). Conditions were 40/40°C (day/night temperature) on the high end of the plate and 5/5 ºC on the cool end. Two temperature gradients ranging from 5 to 40°C were used. The first gradient, progressing from left to right on the thermogradient plate in dark, was alternated every 12 hours with the second progressing from front to back of the thermogradient plate with light. The study was repeated twice. Fifteen (15) seeds were used in each replication. The various temperature combinations had significant effect on final germination percentage, mean germination time, time for first germination and rate of germination. Alternating temperatures improved overall germination. The best germination at a constant temperature was at 20/20°C and 30/30°C. The best temperature regimes for seed germination at alternating temperatures were at 5/30°C, 10/30°C,15/30°C, 20/25°C, 20/35°C, 25/15°C, 25/20°C, 25/30°C, 30/20°C, 35/10°C, and 35/15°C.Keywords: Khaya anthotheca, germination testing, thermogradient plate, temperature regimes, germination percentag
Polymorphisms of the NER pathway genes, ERCC1 and XPD are associated with esophageal adenocarcinoma risk
Purpose Functional variation in DNA repair capacity through single nucleotide polymorphisms (SNPs) of key repair genes is associated with a higher risk of developing various types of cancer. Studies have focused on the nucleotide excision repair (NER) and base excision repair (BER) pathways. We investigated whether variant alleles in seven SNPs within these pathways increased the risk of esophageal adenocarcinoma. Methods DNA was extracted from prospectively collected blood specimens. The samples were genotyped for SNPs in NER genes (XPD Lys751Gln, XPD Asp312Asn, ERCC1 8092C/A, and ERCC1 118C/T), and BER genes (XRCC1 Arg399Gln, APE1 Asp148Glu, and hOGG1 Ser326Cys). The presence of variant alleles was correlated with risk of esophageal adenocarcinoma both individually and jointly. Results Variant alleles in NER SNPs XPD Lys751Gln (AOR = 1.50, 95% CI 1.1–2.0), ERCC1 8092 C/A (AOR = 1.44, 95% CI 1.1–1.9), and ERCC1 118C/T (AOR = 1.42, 95% CI 1.0–1.9) were individually associated with esophageal adenocarcinoma risk. An increasing number of variant alleles in NER SNPs showed a significant trend with esophageal adenocarcinoma risk (p = 0.007). Conclusions The presence of variant alleles in NER genes increases risk of esophageal adenocarcinoma. There is evidence of an additive role for SNPs along a common DNA repair pathway. Future larger studies of esophageal adenocarcinoma etiology should evaluate entire biological pathways